Analisis Perbandingan Tebal Struktur Perkerasan Jalan Kaku Menggunakan Metode AASHTO 1993, Pd T–14–2003, dan MDP 2024
DOI:
https://doi.org/10.38043/reinforcement.v4i2.7155Keywords:
Perkerasan kaku, AASHTO 1993, Pd T–14–2003, MDP 2024Abstract
Perencanaan perkerasan jalan yang andal penting untuk menjamin umur rencana dan kinerja struktural, terutama pada ruas jalan dengan volume lalu lintas tinggi seperti pada rencana Jalan Tol Gilimanuk–Mengwi. Penelitian ini memiliki urgensi untuk membandingkan metode desain perkerasan kaku yang mengusung prinsip empiris dan mekanistik empiris terhadap kondisi lapangan di Indonesia, yang memiliki karakteristik iklim tropis dengan curah hujan tinggi serta tanah dasar bervariasi. Penelitian ini bertujuan membandingkan hasil tebal perkerasan kaku dengan metode AASHTO 1993, Pd T–14–2003, dan Manual Desain Perkerasan 2024 (MDP 2024). Metode penelitian dilakukan menggunakan pedoman desain perencanaan pada tebal slab beton, yaitu AASHTO 1993, Pd T–14–2003, dan MDP 2024. Hasil analisis menunjukkan metode AASHTO 1993 menghasilkan tebal slab 30,00 cm dengan nilai W18 sebesar 31.363.966 ESA, menunjukkan efisiensi struktural tinggi. Metode Pd T–14–2003 memperlihatkan hasil analisis kelelahan dan erosi dengan nilai persentase kerusakan di bawah 100%, menandakan desain yang aman secara struktural. Sementara metode MDP 2024 menghasilkan nilai fatigue 0% dan erosi 92,77%, menandakan ketahanan tinggi terhadap beban berulang dan potensi erosi tanah dasar. Kesimpulannya, metode MDP 2024 paling representatif dan adaptif terhadap kondisi lalu lintas serta lingkungan di Indonesia. Penelitian ini berkontribusi dalam memberikan dasar ilmiah untuk pemilihan metode desain perkerasan kaku dalam konsep empiris maupun mekanistik empiris.
References
A. H. Al-Qaili, A. I. Al-Mansour, H. Al-Solieman, and K. AlSharabi, “RNN-based pavement moduli prediction for flexible pavement design enhancement,” Case Studies in Construction Materials, vol. 20, p. e02811, Jul. 2024, doi: 10.1016/j.cscm.2023.e02811.
J. Kwon, Y. Seo, and A. Kaplan, “Assessment of Full-Depth Reclamation (FDR) pavement performance: A case study in Georgia,” Case Studies in Construction Materials, vol. 20, p. e02910, Jul. 2024, doi: 10.1016/j.cscm.2024.e02910.
H. Ceylan, S. Kim, K. Gopalakrishnan, C. W. Schwartz, and R. Li, “Sensitivity analysis frameworks for mechanistic-empirical pavement design of continuously reinforced concrete pavements,” Constr Build Mater, vol. 73, pp. 498–508, Dec. 2014, doi: 10.1016/j.conbuildmat.2014.09.091.
S.-H. Kim, J.-Y. Park, and J.-H. Jeong, “Effect of temperature-induced load on airport concrete pavement behavior,” KSCE Journal of Civil Engineering, vol. 18, no. 1, pp. 182–187, Jan. 2014, doi: 10.1007/s12205-014-0056-7.
P. Babashamsi, N. I. Md Yusoff, H. Ceylan, N. G. Md Nor, and H. Salarzadeh Jenatabadi, “Evaluation of pavement life cycle cost analysis: Review and analysis,” International Journal of Pavement Research and Technology, vol. 9, no. 4, pp. 241–254, Jul. 2016, doi: 10.1016/j.ijprt.2016.08.004.
Y. Chen and J. Xue, “Sustainable urban freight: pavement, environmental, and economic impacts of heavy-duty electric trucks,” Transp Res D Transp Environ, vol. 149, p. 105033, Dec. 2025, doi: 10.1016/j.trd.2025.105033.
G. White, “Comparing the Cost of Rigid and Flexible Aircraft Pavements Using a Parametric Whole of Life Cost Analysis,” Infrastructures (Basel), vol. 6, no. 8, p. 117, Aug. 2021, doi: 10.3390/infrastructures6080117.
Y. Koh et al., “Performance prediction models for flexible and rigid pavements – state-of-the-practice review for implementation in North America,” International Journal of Pavement Engineering, vol. 26, no. 1, Dec. 2025, doi: 10.1080/10298436.2025.2513454.
J. Sun, E. Oh, G. Chai, Z. Ma, D. E. L. Ong, and P. Bell, “A systematic review of structural design methods and nondestructive tests for airport pavements,” Constr Build Mater, vol. 411, p. 134543, Jan. 2024, doi: 10.1016/j.conbuildmat.2023.134543.
A. H. Elbosraty, M. Bahr, and A. M. Ebid, “Cost optimization for flexible pavement on fine sand improved using palm fibers,” Sci Rep, vol. 15, no. 1, p. 17454, May 2025, doi: 10.1038/s41598-025-02115-7.
I. P. C. Wibawa, I. M. A. Ariawan, and M. D. Ardana, “Influence of CBR Variations on Rigid Pavement Structural Design for Airport Service Roads,” Interdisciplinary Social Studies, vol. 4, no. 4, pp. 746–757, Sep. 2025, doi: 10.55324/iss.v4i4.940.
H. H. Titi and M. G. Matar, “Estimating resilient modulus of base aggregates for mechanistic-empirical pavement design and performance evaluation,” Transportation Geotechnics, vol. 17, pp. 141–153, Dec. 2018, doi: 10.1016/j.trgeo.2018.09.014.
S. Lv, J. Yuan, X. Peng, N. Zhang, H. Liu, and X. Luo, “A structural design for semi-rigid base asphalt pavement based on modulus optimization,” Constr Build Mater, vol. 302, p. 124216, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124216.
Z. Yang, L. Wang, D. Cao, Y. Miao, and H. Yang, “Structural optimization design of semi-rigid base asphalt pavement using modulus matching criterion and multi-indicator range analysis,” Journal of Traffic and Transportation Engineering (English Edition), vol. 11, no. 1, pp. 131–159, Feb. 2024, doi: 10.1016/j.jtte.2022.10.002.
B. Huang, Q. Pan, X. Chen, J. Hu, and S. Lv, “Integrated Design of Materials and Structures for Flexible Base Asphalt Pavement,” Materials, vol. 18, no. 15, p. 3602, Jul. 2025, doi: 10.3390/ma18153602.
Depkimpraswil, Pd T-14-2003 Perencanaan perkerasan jalan beton semen. 2003.
Kementerian PUPR Dirjen Bina Marga, Manual Desain Perkerasan Jalan 2024. 2024.
N. Su, F. Xiao, J. Wang, and S. Amirkhanian, “Characterizations of base and subbase layers for Mechanistic-Empirical Pavement Design,” Constr Build Mater, vol. 152, pp. 731–745, Oct. 2017, doi: 10.1016/j.conbuildmat.2017.07.060.
O. C. Assogba, Y. Tan, X. Zhou, C. Zhang, and J. N. Anato, “Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect,” Constr Build Mater, vol. 235, p. 117406, Feb. 2020, doi: 10.1016/j.conbuildmat.2019.117406.
P. Khamkhanpom, Q. P. Nguyen, V. C. La, X. Q. Le, and Q. T. Nguyen, “Mechanistic-Empirical pavement design method and applicability in Laos,” Transportation Research Procedia, vol. 85, pp. 18–25, 2025, doi: 10.1016/j.trpro.2025.03.129.
C. W. Schwartz, R. Li, H. Ceylan, S. Kim, and K. Gopalakrishnan, “Global Sensitivity Analysis of Mechanistic–Empirical Performance Predictions for Flexible Pavements,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2368, no. 1, pp. 12–23, Jan. 2013, doi: 10.3141/2368-02.
H. Ceylan, K. Gopalakrishnan, S. Kim, C. W. Schwartz, and R. Li, “Global Sensitivity Analysis of Jointed Plain Concrete Pavement Mechanistic–Empirical Performance Predictions,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2367, no. 1, pp. 113–122, Jan. 2013, doi: 10.3141/2367-12.
A. Azam et al., “Life cycle assessment and pavement performance of recycled aggregates in road construction,” Case Studies in Construction Materials, vol. 20, p. e03062, Jul. 2024, doi: 10.1016/j.cscm.2024.e03062.
I. P. C. Wibawa, I. N. A. Thanaya, and I. M. A. Ariawan, “The influence of aggregate gradation properties on the characteristics of cold mix asphalt emulsion,” Journal of Infrastructure Planning and Engineering, vol. 4, no. 1, pp. 23–38, May 2025, doi: 10.22225/jipe.4.1.2025.23-38.
M. N. Prayudyanto, A. Alimuddin, and A. Suhendra, “Analisis Tebal Perkerasan Jalan dengan Metode AASHTO terhadap Kerusakan Ruas Jalan Cileungsi – Cinyongsong Udik, Kabupaten Bogor,” Jurnal Komposit, vol. 7, no. 1, pp. 43–52, Feb. 2023, doi: 10.32832/komposit.v7i1.8062.
R. Rivaldo and F. R. Yamali, “Perencanaan Perkerasan Kaku (Rigid Pavement) Ruas Jalan Hitam Ulu-Mentawak Di Kabupaten Merangin (Menggunakan Metode AASHTO 1993),” Jurnal Talenta Sipil, vol. 5, no. 1, p. 35, Feb. 2022, doi: 10.33087/talentasipil.v5i1.95.
A. B. K. Suharso, B. F. Ananda, and U. Khatulistiani, “Perencanaan Perkerasan Kaku di Jalan Raya Lontar Kota Surabaya dengan Metode AASHTO 1993,” EXTRAPOLASI, vol. 22, no. 01, pp. 23–36, May 2025, doi: 10.30996/ep.v22i01.11683.
Sumina and K. J. Priyanto, “Perbandingan Perencanaan Perkerasan Jalan Rigid Pavement Dengan Menggunakan Metode SNI Pd T-14-2003 dan NAASRA,” Jurnal Teknik Sipil dan Arsitektur, vol. 25, no. 2, pp. 50–61, Jul. 2020, doi: 10.36728/jtsa.v25i2.1075.
F. Juwita, D. N. Afni, and F. Hidayat, “Analisa Perencanaan Tebal Perkerasan Kaku (Rigid Pavement) Ruas Jalan Jabung – Sp. Labuhan Maringgai (Sta 15+650 – 16+650),” Teknika Sains: Jurnal Ilmu Teknik, vol. 7, no. 1, pp. 17–23, Apr. 2022, doi: 10.24967/teksis.v7i1.1591.
Supriyanti and Darmadi, “Perencanaan Tebal Perkerasan Kaku (Rigid Pavement) Pada Ruasjalan Pasir Putih Kelurahan Pasir Putih Kecamatan Sawangan Kota Depok,” JURNAL TEKNIK SIPIL-ARSITEKTUR, vol. 22, no. 2, Nov. 2023, doi: 10.54564/jtsa.v22i2.161.
J. Nopriyus and Gusmulyani, “Analisis Perencanaan Tebal Perkerasan Kaku Dengan Metode Manual Desain Perkerasan (MDP) Bina Marga 2017 (Studi Kasus Pada Ruas Jalan Pendidikan Simpang Tiga Kebun Nenas),” JuPerSaTeK, vol. 5, no. 2, pp. 181–186, 2022, doi: https://doi.org/10.36378/jupersatek.v5i2.2763.
R. Ardiansyah and T. Sudibyo, “Analisis Perencanaan Tebal Perkerasan Kaku Lajur Pengganti pada Proyek Pembangunan Jalan Tol Jakarta-Cikampek II Elevated,” Jurnal Teknik Sipil dan Lingkungan, vol. 5, no. 1, pp. 17–30, May 2020, doi: 10.29244/jsil.5.1.17-30.
A. Hu, Q. Bai, L. Chen, S. Meng, Q. Li, and Z. Xu, “A review on empirical methods of pavement performance modeling,” Constr Build Mater, vol. 342, p. 127968, Aug. 2022, doi: 10.1016/j.conbuildmat.2022.127968.
F. Ahmed, J. Thompson, D. Kim, N. Huynh, and E. Carroll, “Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides,” International Journal of Transportation Science and Technology, vol. 12, no. 1, pp. 46–61, Mar. 2023, doi: 10.1016/j.ijtst.2021.11.004.
H. Li and L. Khazanovich, “Multi-gene genetic programming extension of AASHTO M-E for design of low-volume concrete pavements,” Journal of Road Engineering, vol. 2, no. 3, pp. 252–266, Sep. 2022, doi: 10.1016/j.jreng.2022.08.002.
G. Kollaros and A. Athanasopoulou, “Influence of drainage on flexible road pavement design,” Research on Engineering Structures and Materials, 2017, doi: 10.17515/resm2016.76ma0726.
A. M. Rahim and K. P. George, “Models to estimate subgrade resilient modulus for pavement design,” International Journal of Pavement Engineering, vol. 6, no. 2, pp. 89–96, Jun. 2005, doi: 10.1080/10298430500131973.
J. M. Vandenbossche, F. Mu, and T. R. Burnham, “Comparison of measured vs. predicted performance of jointed plain concrete pavements using the Mechanistic–Empirical Pavement Design Guideline,” International Journal of Pavement Engineering, vol. 12, no. 3, pp. 239–251, Jun. 2011, doi: 10.1080/10298436.2010.506536.
Dr. M. Shallal and E. S. Ahmed, “A Comparison between the Empirical and Mechanistic-Empirical Pavement Design Methods,” International Journal of Scientific Research and Management, vol. 7, no. 07, Jul. 2019, doi: 10.18535/ijsrm/v7i7.ec01.
K. Tuleubekov and D. R. Brill, “Correlation between Subgrade Reaction Modulus and CBR for Airport Pavement Subgrades,” in T&DI Congress 2014, Reston, VA: American Society of Civil Engineers, May 2014, pp. 813–822. doi: 10.1061/9780784413586.079.
D. S. Gedafa, J. Mulandi, M. Hossain, and G. Schieber, “Comparison of Pavement Design Using AASHTO 1993 and NCHRP Mechanistic-Empirical Pavement Design Guides,” in Transportation and Development Institute Congress 2011, Reston, VA: American Society of Civil Engineers, Mar. 2011, pp. 538–547. doi: 10.1061/41167(398)52.
Y. H. Huang, Pavement Analysis and Design, 2nd Edition. Lexington, 2004.
Q. Li, D. X. Xiao, K. C. P. Wang, K. D. Hall, and Y. Qiu, “Mechanistic-empirical pavement design guide (MEPDG): a bird’s-eye view,” Journal of Modern Transportation, vol. 19, no. 2, pp. 114–133, Jun. 2011, doi: 10.1007/BF03325749.
G. Sabih and R. A. Tarefder, “Impact of variability of mechanical and thermal properties of concrete on predicted performance of jointed plain concrete pavements,” International Journal of Pavement Research and Technology, vol. 9, no. 6, pp. 436–444, Nov. 2016, doi: 10.1016/j.ijprt.2016.09.005.
B. Snilsberg, R. G. Saba, and L. J. Bakloekk, “Further Development and Implementation of a Mechanistic-Empirical Design and Analysis System for Pavement Structures in Norway,” in Proceedings of the 10th TRA Conference, 2024, Dublin, Ireland, Volume 5: Smart Resilient Infrastructur, 2025, pp. 181–187.
D. Tompkins, L. Johanneck, and L. Khazanovich, “State Design Procedure for Rigid Pavements Based on the AASHTO Mechanistic–Empirical Pavement Design Guide,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2524, no. 1, pp. 23–32, Jan. 2015, doi: 10.3141/2524-03.
X. Wu, S. Motaharitabari, M. Hossain, S. E. Kulesza, and N. Velasquez, “Concrete Pavement Design Analysis Using AASHTOWare Pavement Mechanistic-Empirical Design Software,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2678, no. 10, pp. 315–324, Oct. 2024, doi: 10.1177/03611981241233279.
G. R. Chehab, R. H. Chehade, L. Houssami, and R. Mrad, “Implementation Initiatives of the Mechanistic-Empirical Pavement Design Guide in Countries with Insufficient Design Input Data – The Case of Lebanon,” 2018, pp. 147–167. doi: 10.1007/978-3-319-61908-8_12.
Z. Wu, D. X. Xiao, and Z. Zhang, “Research Implementation of AASHTOWare Pavement ME Design in Louisiana,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2590, no. 1, pp. 1–9, Jan. 2016, doi: 10.3141/2590-01.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reinforcement Review in Civil Engineering Studies and Management

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

