Evaluasi Perkerasan Landasan Pacu Pada Bandara Pattimura Dengan Membandingkan Metode FAA dan FAARFIELD Software

Authors

  • Mario Stevano Lewa Universitas Pendidikan Nasional
  • Putu Ariawan Universitas Pendidikan Nasional
  • Putu Budiarnaya Universitas Pendidikan Nasional

Keywords:

Runway, Flexible Pavement, FAARFIELD

Abstract

Maluku is one of the provinces in eastern Indonesia which is famous for its natural beauty. This is supported by the number of tourists who come there through Pattimura airport. With the increasing demand for air transportation at Pattimura airport at this time it is necessary to change the airport facilities specifically runways to accommodate all flight requests. Therefore, the thickness of the pavement of the runway must meet the strength of the structure so that it can serve the movement of the aircraft according to the age of the plan (in 2037). The purpose of the final assignment is to evaluate the strength of the pavement of the runway by comparing the flexible pavement design between the FAA Method and FAARFIELD Software. The data used are passenger data for 2011-2017, aircraft movement data, and runway layout images. Both of these methods will later be used as a reference in changing the thickness of the pavement according to the current condition of the existing runway. The total calculation results using a flexible pavement planning curve with CBR 6 for subgrade and CBR 20 for the subbase obtained results of 78,74 cm from the FAA method and 73,66 cm with the FAARFIELD software. The results of these two methods have a thickness greater than the current pavement condition of Pattimura airport, which is 68,58 cm. Therefore it is necessary to re-plan the thickness of the pavement so that it can accommodate aircraft movements at the planned age.

References

Horonjeff, Robert, Mckelvey Francis X. (2010). Planning and Design of Airport. Fifth Edition, The McGraw-Hills Companies, Inc

Nursalim, M. (2017). Evaluasi Kebutuhan Luasan Apron Pada Rencana Pengembangan Bandar Udara Internasional Ahmad Yani Semarang, 6(1), 129.

International Civil Aviation Organization, ICAO Annex. (1999). Aedrome Design Manual, Third Edition. United State Of America : Department of Transportation

Kusuma, Dwi. (2014). “mengenal konstruksi lapisan aspal”, diunduh dari https://dwikusumadpu.wordpress.com/2014/02/09/mengenal-konstruksi-lapisan-aspal/ diakses pada tanggal 4 september 2018

Morlok, Edward K. (1985). Pengantar Teknik dan Perencanaan Transportasi. Jakarta : Erlangga

Nababan, Anton Manontong. (2012). Desain Tebal Perkerasan dan Panjang Runway Menggunakan Metode FAA ; Studi Kasus Bandar Udara Internasional Kuala Namu Sumatra Utara. Jakarta : Jurusan Teknik Sipil Universitas Bina Nusantara, Jakarta

Pemerintah Provinsi Maluku. (2018). “indonesia attractiveness award (IAA) ” diunduh dari “http://www.malukuprov.go.id/index.php/2016-10-06-01-23-56/berita/item/287-jumat-gubernur-terima-indonesia-s-attractiveness-award-iaa-2017 diakses pada tanggal 2 januari 2018

Sandhyavitri, Ari dan Taufik, Hendra. (2005). Teknik Lapangan Terbang I : Teori Dasar.Riau : UNRI

Wikipedia. (2018). “bandara international pattimura”, di unduh dari https://id.wikipedia.org/wiki/Bandar_Udara_Internasional_Pattimura diakses pada tanggal 4 Oktober 2018

Yusuf, Muhamad. (2010). Analisa Metode – Metode Perencanaan Perkerasan Struktural Runway Bandar Udara. Medan : Jurusan Teknik Sipil Universitas Sumatra Utara, Medan

Zainudin, Achmad. (1983). Selintas Pelabuhan Udara, Teknik Sipil. Edisi pertama. Yogyakarta Ananda

Anugrahadi, R., Jurusan, D., & Sipil, T. (2005). Evaluasi Penggunaan Apron, 5(2), 171–186.(Anugrahadi, Jurusan, & Sipil, 2005)

Downloads

Published

2021-02-16

Issue

Section

Articles