Generative AI in Enhancing Hydroponic Nutrient Solution Monitoring

Authors

  • Musawer Hakimi Computer Science Department, Samangan University, Samangan, Afganistan
  • I Wayan Aditya Suranata Information Technology Department, Universitas Pendidikan Nasional, Indonesia
  • Zakirullah Ezam Computer Science Faculty, Sayed Jamaluddin Afghani University, Kunar, Afghanistan
  • Abdul Wahid Samadzai Faculty of Computer Science, Kabul University, Afghanistan
  • Wahidullah Enayat Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
  • Tamanna Quraishi University of the People, USA
  • Abdul Wajid Fazil Computer Science Faculty, Badakhshan University, Badakhshan, Afghanistan

DOI:

https://doi.org/10.38043/telsinas.v8i1.6242

Keywords:

Small-scale Hydroponics, Monitoring, Generative AI, Flutter Interface, Thingsboard, Open-source

Abstract

Generative AI for IoT Hydroponics Monitoring System for Smallholder Farmers in Developing Regions This is in an effort to support AI-based narrative feedback for real-time decision-making with reference to sensor data (TDS/EC, temperature) and plant context-the pertinent data are species and age. The system, therefore, consists of an ESP32 sensor device; a Flutter mobile application; and the cloud services being offered via Thingsboard and the Gemini API. A systematic approach was undertaken, including design, implementation, integration, and usability testing. The results show effective real-time data collection and secure communication, with accurate AI feedback validated by expert judgment. The results exhibited how AI and IoT could collude in aiding smart agriculture. Future work will concentrate on enhancing the accuracy of the model based on ground truth data and improving the accessibility of the platform.

References

C. Béné et al., “Feeding 9 billion by 2050 – Putting fish back on the menu,” Food Sec., vol. 7, no. 2, pp. 261–274, Apr. 2015, doi: 10.1007/s12571-015-0427-z.

K. E. Giller et al., “The future of farming: Who will produce our food?,” Food Sec., vol. 13, no. 5, pp. 1073–1099, Oct. 2021, doi: 10.1007/s12571-021-01184-6.

M. S. Gumisiriza, P. Ndakidemi, A. Nalunga, and E. R. Mbega, “Building sustainable societies through vertical soilless farming: A cost-effectiveness analysis on a small-scale non-greenhouse hydroponic system,” Sustainable Cities and Society, vol. 83, p. 103923, Aug. 2022, doi: 10.1016/j.scs.2022.103923.

T. Mizik, “How can precision farming work on a small scale? A systematic literature review,” Precision Agric, vol. 24, no. 1, pp. 384–406, Feb. 2023, doi: 10.1007/s11119-022-09934-y.

I. N. K. Wardana, P. I. Ciptayani, and I. W. A. Suranata, “Sub-1GHz wireless sensing and control instruments for green house farming system,” J. Phys.: Conf. Ser., vol. 953, p. 012081, Jan. 2018, doi: 10.1088/1742-6596/953/1/012081.

A. T. Balafoutis, F. K. V. Evert, and S. Fountas, “Smart Farming Technology Trends: Economic and Environmental Effects, Labor Impact, and Adoption Readiness,” Agronomy, vol. 10, no. 5, Art. no. 5, May 2020, doi: 10.3390/agronomy10050743.

A. Ambarwati, C. Chazali, I. Sadoko, and B. White, “Youth and Agriculture in Indonesia,” in Becoming A Young Farmer: Young People’s Pathways Into Farming: Canada, China, India and Indonesia, S. Srinivasan, Ed., in Rethinking Rural. , Cham: Springer International Publishing, 2024, pp. 303–335. doi: 10.1007/978-3-031-15233-7_11.

Y.-M. Wu et al., “IoT-interfaced solid-contact ion-selective electrodes for cyber-monitoring of element- specific nutrient information in hydroponics,” Computers and Electronics in Agriculture, vol. 214, p. 108266, Nov. 2023, doi: 10.1016/j.compag.2023.108266.

T.-I. Ahn and J.-E. Son, “Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers,” Horticulturae, vol. 8, no. 4, Art. no. 4, Apr. 2022, doi: 10.3390/horticulturae8040295.

I. W. A. Suranata and I Gede Humaswara Prathama, “Arsitektur Moisture Meter dengan Capacitive Sensing dan Serverless IoT Untuk Hidroponik Fertigasi,” RESTI, vol. 5, no. 2, pp. 292–300, Apr. 2021, doi: 10.29207/resti.v5i2.2993.

W.-J. Cho, H.-J. Kim, D.-H. Jung, D.-W. Kim, T. I. Ahn, and J.-E. Son, “On-site ion monitoring system for precision hydroponic nutrient management,” Computers and Electronics in Agriculture, vol. 146, pp. 51–58, Mar. 2018, doi: 10.1016/j.compag.2018.01.019.

D. Neocleous and D. Savvas, “Validating a smart nutrient solution replenishment strategy to save water and nutrients in hydroponic crops,” Frontiers in Environmental Science, vol. 10, 2022, doi: 10.3389/fenvs.2022.965964.

R. Chandra et al., “Democratizing Data-Driven Agriculture Using Affordable Hardware,” IEEE Micro, vol. 42, no. 1, pp. 69–77, Jan. 2022, doi: 10.1109/MM.2021.3134743.

A. Alanazi and R. Alfayez, “What is discussed about Flutter on Stack Overflow (SO) question-and-answer (Q&A) website: An empirical study,” Journal of Systems and Software, vol. 215, p. 112089, Sep. 2024, doi: 10.1016/j.jss.2024.112089.

I. J. Eliza, M. A. Urmi, M. T. T. Anan, M. T. H. Munim, F.-Z.-I. Galib, and A. B. M. A. A. Islam, “eDakterBari: A human-centered solution enabling online medical consultation and information dissemination for resource-constrained communities in Bangladesh,” Heliyon, vol. 10, no. 1, p. e23100, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23100.

R. Abbasi, P. Martinez, and R. Ahmad, “The digitization of agricultural industry – a systematic literature review on agriculture 4.0,” Smart Agricultural Technology, vol. 2, p. 100042, Dec. 2022, doi: 10.1016/j.atech.2022.100042.

I. Eteng, C. Ugbe, and S. Oladimeji, “Implementing smart farming using internet technology and data analytics: a prototype of a rice farm,” EEJET, vol. 3, no. 2 (117), pp. 48–62, Jun. 2022, doi: 10.15587/1729-4061.2022.259113.

D. Rao, “The future of healthcare using multimodal AI: Technology that can read, see, hear and sense,” Oral Oncology Reports, vol. 10, p. 100340, Jun. 2024, doi: 10.1016/j.oor.2024.100340.

I. W. A. Suranata, “UDAWA Damodar.” Zenodo, May 26, 2024. doi: 10.5281/zenodo.11312716.

M. McCaig, R. Dara, and D. Rezania, “Farmer-centric design thinking principles for smart farming technologies,” Internet of Things, vol. 23, p. 100898, Oct. 2023, doi: 10.1016/j.iot.2023.100898.

R. S. Velazquez-Gonzalez, A. L. Garcia-Garcia, E. Ventura-Zapata, J. D. O. Barceinas-Sanchez, and J. C. Sosa-Savedra, “A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations,” Agriculture, vol. 12, no. 5, p. 646, Apr. 2022, doi: 10.3390/agriculture12050646.

C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert, “Digital twins in smart farming,” Agricultural Systems, vol. 189, p. 103046, Apr. 2021, doi: 10.1016/j.agsy.2020.103046.

C. Pylianidis, S. Osinga, and I. N. Athanasiadis, “Introducing digital twins to agriculture,” Computers and Electronics in Agriculture, vol. 184, p. 105942, May 2021, doi: 10.1016/j.compag.2020.105942.

I. W. A. Suranata, “UDAWA Frontend.” Zenodo, May 26, 2024. doi: 10.5281/zenodo.11312014.

A. Lizbeth J. Rico, “Automated pH Monitoring and Controlling System for Hydroponics under Greenhouse Condition,” J. Eng. Appl. Sci., vol. 15, no. 2, pp. 523–528, Oct. 2019, doi: 10.36478/jeasci.2020.523.528.

Downloads

Published

2025-04-20

How to Cite

1.
Hakimi M, Suranata IWA, Ezam Z, Samadzai AW, Enayat W, Quraishi T, Fazil AW. Generative AI in Enhancing Hydroponic Nutrient Solution Monitoring. telsinas [Internet]. 2025Apr.20 [cited 2025Apr.21];8(1):94-103. Available from: https://journal.undiknas.ac.id/index.php/teknik/article/view/6242

Issue

Section

Articles