Karbon dari Bahan Alam sebagai Adsorben Ramah Lingkungan: Potensi, Tantangan, dan Aplikasinya
DOI:
https://doi.org/10.38043/natapalemahan.v2i1.6577Keywords:
karbon dari bahan alam, adsorpsi, biomassa, pengolahan air limbah, teknologi hijauAbstract
Karbon dari bahan alam muncul sebagai solusi berkelanjutan untuk mengatasi berbagai jenis polutan dalam air dan udara. Tulisan ini mengulas berbagai aspek penting dari karbon dari bahan alam, mulai dari sumber bahan baku seperti limbah pertanian dan industri pangan, proses pembuatan melalui karbonisasi dan aktivasi, hingga fungsionalisasi untuk meningkatkan afinitas terhadap polutan spesifik. Berbagai aplikasi juga dibahas, termasuk penanganan logam berat, senyawa organik, zat warna sintetis, serta polutan baru seperti obat-obatan dan pestisida. Studi kasus menunjukkan adsorben ini sangat efektif dalam mengolah air limbah industri dan domestik. Namun, implementasi secara luas menghadapi tantangan seperti variabilitas bahan baku, kebutuhan proses aktivasi yang efisien, dan keterbatasan infrastruktur. Dengan pendekatan teknologi hibrida, desentralisasi produksi, dan integrasi dalam ekonomi sirkular, karbon dari bahan alam memiliki potensi besar sebagai alternatif karbon aktif konvensional. Tinjauan ini juga membahas pentingnya penelitian lanjutan dan kebijakan pendukung untuk mendorong pemanfaatan karbon alami sebagai adsorben ramah lingkungan di berbagai skala aplikasi.
References
R. Ganjoo, S. Sharma, A. Kumar, and M. M. A. Daouda, Activated Carbon: Fundamentals, Classification, and Properties, in Activated Carbon, 1st ed., C. Verma and M. A. Quraishi, Eds., The Royal Society of Chemistry, 2023, pp. 122. doi: 10.1039/BK9781839169861-00001.
J. Jjagwe, P. W. Olupot, E. Menya, and H. M. Kalibbala, Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review, Journal of Bioresources and Bioproducts, vol. 6, no. 4, pp. 292322, Nov. 2021, doi: 10.1016/j.jobab.2021.03.003.
T. Khandaker et al., Biomass-Derived Carbon Materials for Sustainable Energy Applications: A Comprehensive Review, Sustainable Energy Fuels, vol. 9, no. 3, pp. 693723, 2025, doi: 10.1039/D4SE01393J.
C. V. Rode and S. E. Kondawar, Chemo-Catalytic Conversion of Lignin Derived Molecules to Speciality Chemicals, in Biomass, Biofuels, Biochemicals, Elsevier, 2021, pp. 267299. doi: 10.1016/B978-0-12-820294-4.00005-3.
A. N. Ardiwinata, Pemanfaatan Arang Aktif dalam Pengendalian Residu Pestisida di Tanah: Prospek dan Masalahnya, Jurnal Lahan, vol. 14, no. 1, p. 49, Jul. 2020, doi: 10.21082/jsdl.v14n1.2020.49-62.
A. G. Adeniyi, K. O. Iwuozor, E. C. Emenike, O. J. Ajala, S. Ogunniyi, and K. B. Muritala, Thermochemical Co-Conversion of Biomass-Plastic Waste to Biochar: A Review, Green Chemical Engineering, vol. 5, no. 1, pp. 3149, Mar. 2024, doi: 10.1016/j.gce.2023.03.002.
K. Czerwiska, M. liz, and M. Wilk, Hydrothermal Carbonization Process: Fundamentals, Main Parameter Characteristics and Possible Applications Including an Effective Method of Sars-Cov-2 Mitigation in Sewage Sludge. a Review, Renewable and Sustainable Energy Reviews, vol. 154, p. 111873, Feb. 2022, doi: 10.1016/j.rser.2021.111873.
M. Afshar and S. Mofatteh, Biochar for a Sustainable Future: Environmentally Friendly Production and Diverse Applications, Results in Engineering, vol. 23, p. 102433, Sep. 2024, doi: 10.1016/j.rineng.2024.102433.
X. Dong et al., Mechanisms of Adsorption and Functionalization of Biochar for Pesticides: A Review, Ecotoxicology and Environmental Safety, vol. 272, p. 116019, Mar. 2024, doi: 10.1016/j.ecoenv.2024.116019.
S. Nasrollahpour, R. Pulicharla, and S. K. Brar, Functionalized Biochar for the Removal of Poly- and Perfluoroalkyl Substances in Aqueous Media, iScience, vol. 28, no. 3, p. 112113, Mar. 2025, doi: 10.1016/j.isci.2025.112113.
H. Heryanto et al., Carbon as a Multifunctional Material in Supporting Adsorption Performance for Water Treatment: Science Mapping and Review, Desalination and Water Treatment, vol. 320, p. 100758, Oct. 2024, doi: 10.1016/j.dwt.2024.100758.
M. S. Soffian, F. Z. Abdul Halim, F. Aziz, M. ARahman, M. A. Mohamed Amin, and D. N. Awang Chee, Carbon-Based Material Derived from Biomass Waste for Wastewater Treatment, Environmental Advances, vol. 9, p. 100259, Oct. 2022, doi: 10.1016/j.envadv.2022.100259.
R. Baby and M. Z. Hussein, Ecofriendly Approach for Treatment of Heavy-Metal-Contaminated Water Using Activated Carbon of Kernel Shell of Oil Palm, Materials, vol. 13, no. 11, p. 2627, Jun. 2020, doi: 10.3390/ma13112627.
E. Widyasari, Supriadi, and I. Said, Adsorption Capacity of Activated Charcoal Made of Rice Husk on Cd(II) Metal Ions, Jurnal Akadeika Kimia, vol. 10, no. 4, pp. 20137, 2024, doi: doi: 10.22487/j24775185.2021.v10.i4.pp213-217.
A. A. G. S. Wiguna, I. B. P. Mardana, and P. Artawan, Synthesis and Characterization of Activated Carbon Prepared from Rice Husk by Physics-Chemical Activation, IPR, vol. 7, no. 2, pp. 281290, May 2024, doi: 10.29303/ipr.v7i2.311.
M. H. Dehghani et al., Recent Advances on Sustainable Adsorbents for the Remediation of Noxious Pollutants from Water and Wastewater: A Critical Review, Arabian Journal of Chemistry, vol. 16, no. 12, p. 105303, Dec. 2023, doi: 10.1016/j.arabjc.2023.105303.
P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola, Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater, Results in Engineering, vol. 16, p. 100678, Dec. 2022, doi: 10.1016/j.rineng.2022.100678.
J. Virkutyte, Ed., Treatment of Micropollutants in Water and Wastewater, Nachdr. in Integrated environmental technology series. London: IWA Publ, 2011.
O. J. Al-sareji, R. A. Grmasha, M. Meiczinger, R. A. Al-Juboori, V. Somogyi, and K. S. Hashim, A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application, Materials, vol. 17, no. 5, p. 1032, Feb. 2024, doi: 10.3390/ma17051032.
C. Deb et al., Design and Analysis for the Removal of Active Pharmaceutical Residues from Synthetic Wastewater Stream, Environ Sci Pollut Res, vol. 26, no. 18, pp. 1873918751, Jun. 2019, doi: 10.1007/s11356-019-05070-9.
M. E. Peafiel, J. M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, and M. P. Ormad, Comparative Adsorption of Ciprofloxacin on Sugarcane Bagasse from Ecuador and on Commercial Powdered Activated Carbon, Science of The Total Environment, vol. 750, p. 141498, Jan. 2021, doi: 10.1016/j.scitotenv.2020.141498.
K. Comet Manesa and Z. Dyosi, Review on Moringa Oleifera , a Green Adsorbent for Contaminants Removal: Characterization, Prediction, Modelling and Optimization Using Response Surface Methodology (rsm) and Artificial Neural Network (ann), Journal of Environmental Science and Health, Part A, vol. 58, no. 13, pp. 10141027, Nov. 2023, doi: 10.1080/10934529.2023.2291977.
R. H. Khuluk, A. Rahmat, Buhani, and Suharso, Pembuatan Dan Karakterisasi Karbon Aktif Dari Tempurung Kelapa (Cocos nucifera L.) Sebagai Adsorben Zat Warna Metilen Biru, Indonesian Journal of Science and Technology, vol. 4, no. 2, pp. 229240, 2019, doi: http://dx.doi.org/10.17509/ijost.v4i2.18179.
R. A. Ningrum, R. T. Salawali, M. D. Arief, J. G. ABan, and A. D. Putri, Physical-Chemical Characterization of Activated Charcoal from Coconut Shells as an Adsorbent in Reducing Ammonia (NH) Content in Nickel Industry Liquid Waste, Satera, vol. 3, no. 1, 2025, Accessed: Jun. 06, 2025. [Online]. Available: https://journal.akom-bantaeng.ac.id/index.php/jstt/article/view/73/59
T. Berhe Gebreegziabher, S. Wang, and H. Nam, Adsorption of H2S, NH3 and TMA from indoor air using porous corncob activated carbon: Isotherm and kinetics study, Journal of Environmental Chemical Engineering, vol. 7, no. 4, p. 103234, Aug. 2019, doi: 10.1016/j.jece.2019.103234.
S. Satyam and S. Patra, Innovations and Challenges in Adsorption-Based Wastewater Remediation: A Comprehensive Review, Heliyon, vol. 10, no. 9, p. e29573, May 2024, doi: 10.1016/j.heliyon.2024.e29573.
D. Barker-Rothschild et al., Lignin-Based Porous Carbon Adsorbents for Co2 Capture, Chem. Soc. Rev., vol. 54, no. 2, pp. 623652, 2025, doi: 10.1039/D4CS00923A.
A. Vinod, H. Pulikkalparambil, P. Jagadeesh, S. M. Rangappa, and S. Siengchin, Recent Advancements in Lignocellulose Biomass-Based Carbon Fiber: Synthesis, Properties, and Applications, Heliyon, vol. 9, no. 3, p. e13614, Mar. 2023, doi: 10.1016/j.heliyon.2023.e13614.
J. F. Nure and T. T. I. Nkambule, The Recent Advances in Adsorption and Membrane Separation and Their Hybrid Technologies for Micropollutants Removal from Wastewater, Journal of Industrial and Engineering Chemistry, vol. 126, pp. 92114, Oct. 2023, doi: 10.1016/j.jiec.2023.06.034.
M. M. Hasan, R. Haque, M. I. Jahirul, and M. G. Rasul, Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts, Energy Conversion and Management, vol. 326, p. 119511, Feb. 2025, doi: 10.1016/j.enconman.2025.119511.
F. Ullah, K. Hasrat, M. Mu, S. Wang, and S. Kumar, Optimizing SolarBiomass Pyrolysis: Innovations in Reactor Design and ThermalSolar System Efficiency, Energies, vol. 18, no. 10, p. 2640, May 2025, doi: 10.3390/en18102640.
D. Smrov et al., Carbon and Zeolite-Based Composites for Radionuclide and Heavy Metal Sorption, Heliyon, vol. 8, no. 12, p. e12293, Dec. 2022, doi: 10.1016/j.heliyon.2022.e12293.
M. S. Akhtar, S. Ali, and W. Zaman, Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications, Molecules, vol. 29, no. 18, p. 4317, Sep. 2024, doi: 10.3390/molecules29184317.
M. Y. Arshad, V. Hessel, A. Halog, D. Lewis, and N. N. Tran, Decentralisation Transition in the Chemical, Energy, and Waste Management Sectors: Innovations, Opportunities, and Sustainable Pathways a Review, Sustainable Energy Technologies and Assessments, vol. 76, p. 104307, Apr. 2025, doi: 10.1016/j.seta.2025.104307.
S. Saxena, M. P. Moharil, P. V. Jadhav, B. Ghodake, R. Deshmukh, and A. P. Ingle, Transforming waste into wealth: Leveraging nanotechnology for recycling agricultural byproducts into value-added products, Plant Nano Biology, vol. 11, p. 100127, Feb. 2025, doi: 10.1016/j.plana.2024.100127.
K. K. Hummadi, S. Luo, and S. He, Adsorption of methylene blue dye from the aqueous solution via bio-adsorption in the inverse fluidized-bed adsorption column using the torrefied rice husk, Chemosphere, vol. 287, p. 131907, Jan. 2022, doi: 10.1016/j.chemosphere.2021.131907.
S. Mohd Samdin, L. H. Peng, and M. Marzuki, Investigation of Coconut Shells Activated Carbon as the Cost Effective Absorbent in Drinking Water Filter, Jurnal Teknologi, vol. 77, no. 22, Dec. 2013, doi: 10.11113/jt.v77.6656.
S. Mahawong et al., Single-Step Upcycling of Sugarcane Bagasse and Iron Scrap into Magnetic Carbon for High-Performance Adsorbents, Molecules, vol. 30, no. 9, p. 2040, May 2025, doi: 10.3390/molecules30092040.
W. K. Buah and J. R. Dankwah, Sorption of Heavy Metals from Mine Wastewater by Activated Carbons Prepared from Coconut Husk, GM, vol. 16, no. 2, pp. 3641, Dec. 2016, doi: 10.4314/gm.v16i2.5.
F. Zulti, N. Setiadewi, A. Waluyo, and E. Susanti, Removal Pollutants in Textile Wastewater Using Unmodified Rice Husk, E3S Web Conf., vol. 483, p. 02008, 2024, doi: 10.1051/e3sconf/202448302008.
O. I. Ayanda, T. Ajayi, and F. P. Asuwaju, Eichhornia crassipes (Mart.) Solms: Uses, Challenges, Threats, and Prospects, The Scientific World Journal, vol. 2020, pp. 112, Jul. 2020, doi: 10.1155/2020/3452172.
B. Ameha, T. T. Nadew, T. S. Tedla, B. Getye, D. A. Mengie, and S. Ayalneh, The use of banana peel as a low-cost adsorption material for removing hexavalent chromium from tannery wastewater: optimization, kinetic and isotherm study, and regeneration aspects, RSC Adv., vol. 14, no. 6, pp. 36753690, 2024, doi: 10.1039/D3RA07476E.
O. P. Prastuti, E. L. Septiani, Y. Kurniati, W. Widiyastuti, and H. Setyawan, Banana Peel Activated Carbon in Removal of Dyes and Metals Ion in Textile Industrial Waste, MSF, vol. 966, pp. 204209, Aug. 2019, doi: 10.4028/www.scientific.net/MSF.966.204.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Manuntun Manurung, Oka Ratnayani, Yenni Ciawi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.