Korosi Mikroba pada Infrastruktur Logam: Tantangan dan Strategi Pengelolaan Berkelanjutan

Authors

  • Yenni Ciawi Universitas Udayana
  • Yan Ramona Universitas Udayana

DOI:

https://doi.org/10.38043/natapalemahan.v1i2.5652

Keywords:

bakteri pereduksi sulfat (SRB), biofilm, korosi mikroba (MIC), mitigasi korosi, spektroskopi impedansi elektrokimia (EIS)

Abstract

Korosi mikroba (MIC, microbiologically influenced corrosion) merupakan masalah pelik di berbagai industri, khususnya pada sektor minyak dan gas, infrastruktur kelautan, dan pengolahan air, karena aktivitas mikroba mempercepat degradasi permukaan logam secara signifikan. MIC umumnya oleh bakteri, arkea, dan jamur yang membentuk biofilm pada logam, dan menyebabkan reaksi elektrokimia lokal yang memicu korosi. Tinjauan ini berfokus pada mikroorganisme utama yang terlibat dalam MIC, seperti bakteri pereduksi sulfat (SRB, sulfate-reducing bacteria), bakteri pengoksidasi besi (IOB, iron-oxidizing bacteria), dan metanogen, serta menjelaskan bagaimana faktor lingkungan,  seperti ketersediaan oksigen, konsentrasi nutrisi, pH, suhu, dan salinitas, mendukung pertumbuhan mikroba dan korosi logam. Berbagai metode deteksi MIC dievaluasi, seperti analisis mikrobiologi, metode elektrokimia seperti spektroskopi impedansi elektrokimia (EIS, electrochemical impedance spectroscopy), metode uji non-destruktif, serta teknologi sensor real-time. Selain itu, strategi mitigasi MIC, seperti penggunaan material tahan korosi, pelapis antimikroba, biosida, dan sistem perlindungan katodik, dibahas secara rinci. Teknologi baru seperti pelapis pintar (self-healing), nanomaterial, dan sistem bioelektrokimia juga disebutkan sebagai solusi menjanjikan untuk pengelolaan MIC yang lebih efektif dan berkelanjutan. Dengan mengintegrasikan metode deteksi dan mitigasi yang canggih, industri dapat melindungi infrastruktur penting dari dampak jangka panjang korosi mikroba dan mengurangi secara signifikan biaya akibat kerusakan oleh MIC.

References

H. Jin, J. Wang, L. Tian, M. Gao, J. Zhao, and L. Ren, Recent advances in emerging integrated antifouling and anticorrosion coatings, Mater. Des., vol. 213, p. 110307, Jan. 2022, doi: 10.1016/j.matdes.2021.110307.

B. J. Little et al., Microbially influenced corrosionAny progress?, Corros. Sci., vol. 170, p. 108641, Jul. 2020, doi: 10.1016/j.corsci.2020.108641.

B. J. Little and J. S. Lee, Microbiologically Influenced Corrosion, in Kirk-Othmer Encyclopedia of Chemical Technology, 1st ed., Kirk-Othmer, Ed., Wiley, 2009, pp. 142. doi: 10.1002/0471238961.micrlitt.a01.

S. Kokilaramani, M. M. Al-Ansari, A. Rajasekar, F. S. Al-Khattaf, A. Hussain, and M. Govarthanan, Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures - A review, Chemosphere, vol. 265, p. 129075, Feb. 2021, doi: 10.1016/j.chemosphere.2020.129075.

P. Kumari and M. Lavanya, Optimization Strategies for Corrosion Management in Industries with Artificial Neural Network and Response Surface Technology: A Comprehensive Review, J. Bio- Tribo-Corros., vol. 10, no. 3, p. 59, Sep. 2024, doi: 10.1007/s40735-024-00863-z.

S. Fernandes, I. B. Gomes, M. Simes, and L. C. Simes, Novel chemical-based approaches for biofilm cleaning and disinfection, Curr. Opin. Food Sci., vol. 55, p. 101124, Feb. 2024, doi: 10.1016/j.cofs.2024.101124.

B. B. Kjellerup et al., Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions, Biofouling, vol. 25, no. 8, pp. 727737, Nov. 2009, doi: 10.1080/08927010903114611.

J. Li, L. Chen, B. Wei, J. Xu, B. Wei, and C. Sun, Microbiologically influenced corrosion of circulating cooling systems in power plants A review, Arab. J. Chem., vol. 17, no. 2, p. 105529, Feb. 2024, doi: 10.1016/j.arabjc.2023.105529.

P. Liu, H. Zhang, Y. Fan, and D. Xu, Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention, Microorganisms, vol. 11, no. 9, p. 2299, Sep. 2023, doi: 10.3390/microorganisms11092299.

S. T. Kalajahi, A. Misra, and A. Koerdt, Nanotechnology to mitigate microbiologically influenced corrosion (MIC), Front. Nanotechnol., vol. 6, p. 1340352, Apr. 2024, doi: 10.3389/fnano.2024.1340352.

F. Fan, B. Zhang, P. L. Morrill, and T. Husain, Isolation of nitrate-reducing bacteria from an offshore reservoir and the associated biosurfactant production, RSC Adv., vol. 8, no. 47, pp. 2659626609, 2018, doi: 10.1039/C8RA03377C.

D. A. Leal, I. C. Riegel-Vidotti, M. G. S. Ferreira, and C. E. B. Marino, Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection, Corros. Sci., vol. 130, pp. 5663, Jan. 2018, doi: 10.1016/j.corsci.2017.10.009.

S. Sanyal et al., Emerging Trends in Smart Self-Healing Coatings: A Focus on Micro/Nanocontainer Technologies for Enhanced Corrosion Protection, Coatings, vol. 14, no. 3, p. 324, Mar. 2024, doi: 10.3390/coatings14030324.

Y. Li et al., Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review, J. Mater. Sci. Technol., vol. 34, no. 10, pp. 17131718, Oct. 2018, doi: 10.1016/j.jmst.2018.02.023.

J. Knisz et al., Microbiologically influenced corrosionmore than just microorganisms, FEMS Microbiol. Rev., vol. 47, no. 5, p. fuad041, Sep. 2023, doi: 10.1093/femsre/fuad041.

M. K. Pal and M. Lavanya, Microbial Influenced Corrosion: Understanding Bioadhesion and Biofilm Formation, J. Bio- Tribo-Corros., vol. 8, no. 3, p. 76, Sep. 2022, doi: 10.1007/s40735-022-00677-x.

H. Makita, Iron-oxidizing bacteria in marine environments: recent progresses and future directions, World J. Microbiol. Biotechnol., vol. 34, no. 8, p. 110, Aug. 2018, doi: 10.1007/s11274-018-2491-y.

I. R. Baker, S. L. Matzen, C. J. Schuler, B. M. Toner, and P. R. Girguis, Aerobic iron-oxidizing bacteria secrete metabolites that markedly impede abiotic iron oxidation, PNAS Nexus, vol. 2, no. 12, p. pgad421, Dec. 2023, doi: 10.1093/pnasnexus/pgad421.

L. Lin, C.-H. Tsou, B. Dou, S. Yan, Y. Zeng, and M. Gong, Electrochemical corrosion behavior and mechanism of iron-oxidizing bacteria Thiobacillus ferrooxidans from acid mine drainage on Q235 carbon steel, New J. Chem., vol. 46, no. 42, pp. 2027920291, 2022, doi: 10.1039/D2NJ04013A.

S. Hirano et al., Novel Methanobacterium Strain Induces Severe Corrosion by Retrieving Electrons from Fe0 under a Freshwater Environment, Microorganisms, vol. 10, no. 2, p. 270, Jan. 2022, doi: 10.3390/microorganisms10020270.

H. Tian, P. Gao, C. Qi, G. Li, and T. Ma, Nitrate and oxygen significantly changed the abundance rather than structure of sulphatereducing and sulphuroxidising bacteria in water retrieved from petroleum reservoirs, Environ. Microbiol. Rep., vol. 16, no. 2, p. e13248, Apr. 2024, doi: 10.1111/1758-2229.13248.

O. Olufemi Odeyemi and P. Adeniyi Alaba, Microbiologically Influenced Corrosion in Oil Fields: Mechanisms, Detection, and Mitigation Strategies, in Corrosion Engineering - Recent Breakthroughs and Innovative Solutions, J. Ou, Ed., IntechOpen, 2024. doi: 10.5772/intechopen.1005181.

W. S. Lee, H. A. Aziz, and H. A. Tajarudin, A recent development on iron-oxidising bacteria (IOB) applications in water and wastewater treatment, J. Water Process Eng., vol. 49, p. 103109, Oct. 2022, doi: 10.1016/j.jwpe.2022.103109.

D. J. Young, Corrosion by Sulphur, in High Temperature Oxidation and Corrosion of Metals, Elsevier, 2016, pp. 393430. doi: 10.1016/B978-0-08-100101-1.00008-X.

M. Perner et al., Environmental changes affect the microbial release of hydrogen sulfide and methane from sediments at Boknis Eck (SW Baltic Sea), Front. Microbiol., vol. 13, p. 1096062, Dec. 2022, doi: 10.3389/fmicb.2022.1096062.

H. Castaneda and X. D. Benetton, SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions, Corros. Sci., vol. 50, no. 4, pp. 11691183, Apr. 2008, doi: 10.1016/j.corsci.2007.11.032.

S. Bagheri Novair, Z. Biglari Quchan Atigh, B. Asgari Lajayer, W. Shu, and G. W. Price, The role of sulphate-reducing bacteria (SRB) in bioremediation of sulphate-rich wastewater: Focus on the source of electron donors, Process Saf. Environ. Prot., vol. 184, pp. 190207, Apr. 2024, doi: 10.1016/j.psep.2024.01.103.

L. B. Schultze, A. Maldonado, A. Lussi, A. Sculean, and S. Eick, The Impact of the pH Value on Biofilm Formation, in Monographs in Oral Science, vol. 29, S. Eick, Ed., S. Karger AG, 2021, pp. 1929. doi: 10.1159/000510196.

M. A. Diaz-Mateus, L. L. Machuca, H. Farhat, and S. J. Salgar-Chaparro, Synergistic corrosion effects of magnetite and microorganisms: microbial community dependency, Appl. Microbiol. Biotechnol., vol. 108, no. 1, p. 253, Dec. 2024, doi: 10.1007/s00253-024-13086-6.

Y. Dong, B. Jiang, D. Xu, C. Jiang, Q. Li, and T. Gu, Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1, Bioelectrochemistry, vol. 123, pp. 3444, Oct. 2018, doi: 10.1016/j.bioelechem.2018.04.014.

A. Ibrahim, K. Hawboldt, C. Bottaro, and F. Khan, Review and analysis of microbiologically influenced corrosion: the chemical environment in oil and gas facilities, Corros. Eng. Sci. Technol., vol. 53, no. 8, pp. 549563, Nov. 2018, doi: 10.1080/1478422X.2018.1511326.

A. Zhao, J. Sun, and Y. Liu, Understanding bacterial biofilms: From definition to treatment strategies, Front. Cell. Infect. Microbiol., vol. 13, p. 1137947, Apr. 2023, doi: 10.3389/fcimb.2023.1137947.

M. L. Carvalho, J. Doma, M. Sztyler, I. Beech, and P. Cristiani, The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: The role of microbiological components, Bioelectrochemistry, vol. 97, pp. 26, Jun. 2014, doi: 10.1016/j.bioelechem.2013.12.005.

M. A. Ahmed, S. A. Mahmoud, and A. A. Mohamed, Unveiling the complexities of microbiologically induced corrosion: mechanisms, detection techniques, and mitigation strategies, Front. Environ. Sci. Eng., vol. 18, no. 10, p. 120, Oct. 2024, doi: 10.1007/s11783-024-1880-8.

A. K. Tripathi et al., Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion, Front. Microbiol., vol. 12, p. 754140, Oct. 2021, doi: 10.3389/fmicb.2021.754140.

M. A. Javed, W. C. Neil, G. McAdam, and S. A. Wade, Effect of sulphate-reducing bacteria on the microbiologically influenced corrosion of ten different metals using constant test conditions, Int. Biodeterior. Biodegrad., vol. 125, pp. 7385, Nov. 2017, doi: 10.1016/j.ibiod.2017.08.011.

Y. Ciawi, F. S. Inabuy, N. M. Teriyani, and Y. Ramona, Potential of sodium dichromate and sodium silicate to control in vitro growth of Bacillus cereus, a metal corrosion-causing bacterium, Biodiversitas J. Biol. Divers., vol. 24, no. 3, Mar. 2023, doi: 10.13057/biodiv/d240324.

P. A. Palacios, W. R. Francis, and A.-E. Rotaru, A WinLoss Interaction on Fe0 Between Methanogens and Acetogens From a Climate Lake, Front. Microbiol., vol. 12, p. 638282, May 2021, doi: 10.3389/fmicb.2021.638282.

T. S. Rao, Industrial applications and implications of biofilms, in Understanding Microbial Biofilms, Elsevier, 2023, pp. 713738. doi: 10.1016/B978-0-323-99977-9.00029-6.

S. N. Victoria, A. Sharma, and R. Manivannan, Metal corrosion induced by microbial activity Mechanism and control options, J. Indian Chem. Soc., vol. 98, no. 6, p. 100083, Jun. 2021, doi: 10.1016/j.jics.2021.100083.

M. Moradi, G. Ghiara, R. Spotorno, D. Xu, and P. Cristiani, Understanding biofilm impact on electrochemical impedance spectroscopy analyses in microbial corrosion and microbial corrosion inhibition phenomena, Electrochimica Acta, vol. 426, p. 140803, Sep. 2022, doi: 10.1016/j.electacta.2022.140803.

R. Srinivasan and R. Punathil Meethal, EIS Technique for Corrosion Study and Analysis, in A Treatise on Corrosion Science, Engineering and Technology, U. Kamachi Mudali, T. Subba Rao, S. Ningshen, R. G. Pillai, R. P. George, and T. M. Sridhar, Eds., in Indian Institute of Metals Series. , Singapore: Springer Nature Singapore, 2022, pp. 320. doi: 10.1007/978-981-16-9302-1_1.

M. Dargahi, Z. Hosseinidoust, N. Tufenkji, and S. Omanovic, Investigating electrochemical removal of bacterial biofilms from stainless steel substrates, Colloids Surf. B Biointerfaces, vol. 117, pp. 152157, May 2014, doi: 10.1016/j.colsurfb.2014.02.021.

V. Vasagar et al., Non-destructive techniques for corrosion detection: A review, Corros. Eng. Sci. Technol. Int. J. Corros. Process. Corros. Control, vol. 59, no. 1, pp. 5685, Feb. 2024, doi: 10.1177/1478422X241229621.

J. Sahoo, S. Sarkhel, N. Mukherjee, and A. Jaiswal, Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections, ACS Omega, vol. 7, no. 50, pp. 4596245980, Dec. 2022, doi: 10.1021/acsomega.2c06211.

P. Bajpai, The Control of Microbiological ProblemsSome excerpts taken from Bajpai P (2012). Biotechnology for Pulp and Paper Processing with kind permission from Springer Science1Business Media., in Pulp and Paper Industry, Elsevier, 2015, pp. 103195. doi: 10.1016/B978-0-12-803409-5.00008-2.

X. Shi et al., Comprehensive Review on the Use of Biocides in Microbiologically Influenced Corrosion, Microorganisms, vol. 11, no. 9, p. 2194, Aug. 2023, doi: 10.3390/microorganisms11092194.

S. Sharma, J. Mohler, S. D. Mahajan, S. A. Schwartz, L. Bruggemann, and R. Aalinkeel, Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment, Microorganisms, vol. 11, no. 6, p. 1614, Jun. 2023, doi: 10.3390/microorganisms11061614.

A. S. Imbia, A. Ounkaew, X. Mao, H. Zeng, Y. Liu, and R. Narain, Tannic Acid-Based Coatings Containing Zwitterionic Copolymers for Improved Antifouling and Antibacterial Properties, Langmuir, p. acs.langmuir.3c03237, Feb. 2024, doi: 10.1021/acs.langmuir.3c03237.

C. S. Proena, B. Serrano, J. Correia, and M. E. M. Arajo, Evaluation of Tannins as Potential Green Corrosion Inhibitors of Aluminium Alloy Used in Aeronautical Industry, Metals, vol. 12, no. 3, p. 508, Mar. 2022, doi: 10.3390/met12030508.

V. Liduino, M. Galvo, S. Brasil, and E. Srvulo, SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection, Colloids Surf. B Biointerfaces, vol. 202, p. 111701, Jun. 2021, doi: 10.1016/j.colsurfb.2021.111701.

A. A. Thompson, J. L. Wood, E. A. Palombo, W. K. Green, and S. A. Wade, From laboratory tests to field trials: a review of cathodic protection and microbially influenced corrosion, Biofouling, vol. 38, no. 3, pp. 298320, Mar. 2022, doi: 10.1080/08927014.2022.2058395.

A. S. H. Makhlouf, V. Herrera, and E. Muoz, Corrosion and protection of the metallic structures in the petroleum industry due to corrosion and the techniques for protection, in Handbook of Materials Failure Analysis, Elsevier, 2018, pp. 107122. doi: 10.1016/B978-0-08-101928-3.00006-9.

Downloads

Published

2024-10-25

How to Cite

Ciawi, Y., & Ramona, Y. (2024). Korosi Mikroba pada Infrastruktur Logam: Tantangan dan Strategi Pengelolaan Berkelanjutan. Nata Palemahan: Journal of Environmental Engineering Innovations, 1(2), 42-51. https://doi.org/10.38043/natapalemahan.v1i2.5652

Issue

Section

Articles