YOLOv8-Based Quality Detection of Bali MSMEs Staple Food
DOI:
https://doi.org/10.38043/tiers.v6i2.7144Keywords:
Staple food quality, YOLOv8, Deep learning, Image detection, MSMEsAbstract
Ensuring the quality of staple foods such as rice, cooking oil, milk, and meat is crucial for consumer safety and health. In Indonesian Micro, Small and Medium Enterprises (MSMEs), quality assessment often depends on subjective and time-consuming visual inspection. This study develops an automatic quality detection system using YOLOv8, applied to food MSMEs in Bali, to detect 14 quality categories across the four commodities based on image data. The methodology includes dataset collection from MSMEs, image annotation, preprocessing, training YOLOv8s and YOLOv8m models, and evaluating performance using mAP50, accuracy, precision, recall, and F1-score. Results show that YOLOv8m achieved a mAP50 of 96.5%, indicating high detection accuracy. The system, implemented as a web-based application, has strong potential to improve efficiency, ensure consistent product quality, and support Sustainable Development Goals (SDGs) 2, 3, 8, and 9.
Downloads
References
Y. Leilasariyanti, D. Setiawan, M. Ramadhani, D. L. Maulida, and Y. M. Ningsih, Kontribusi Praktik Keamanan Terhadap Ketahanan Pangan: Studi Kasus UMKM Pengolahan Hasil Pertanian di Kota Surabaya, AGRIEKSTENSIA: Jurnal Penelitian Terapan Bidang Pertanian, vol. 23, no. 2, pp. 355360, Dec. 2024, doi: 10.34145/agriekstensia.v23i2.3430.
Dr. Mulono Apriyanto, STP., MP., Pengetahuan Dasar Bahan Pangan. in Cetakan Pertama. Banten: CV. AA. RIZKY, 2022. [Online]. Available: https://repository.unisi.ac.id/285/1/Mulono%20Buku%20referensi%20Pengetahuan%20Dasar%20Bahan%20Pangan.pdf
H. Singathala, J. Malla, and P. Lekkala, Quality Analysis and Classification of Rice Grains using Image Processing Techniques, vol. 10, no. 08, 2023.
P. Das et al., Recent advances on artificial intelligence-based approaches for food adulteration and fraud detection in the food industry: Challenges and opportunities, Food Chemistry, vol. 468, p. 142439, Mar. 2025, doi: 10.1016/j.foodchem.2024.142439.
O. Klc and M. Koklu, Automated Classification of Biscuit Quality Using YOLOv8 Models in Food Industry, Food Anal. Methods, Jan. 2025, doi: 10.1007/s12161-025-02755-5.
Food and Agriculture Organization of United Nation, Sustainable Development Goals: 17 Goals to Transform Our World. FAO Regional Office for Asia and the Pacific. Accessed: Mar. 25, 2025. [Online]. Available: https://openknowledge.fao.org/server/api/core/bitstreams/28b2fb42-a8f6-4274-91c7-ea10df6b43c8/content
E. A. Dan, B. F. Oladejo, and V. E. Ekong, A Model For Predicting Food Insecurity in Nigeria using Deep Learning Technique, vol. 47, 2023.
M. Herrero et al., Articulating the effect of food systems innovation on the Sustainable Development Goals, The Lancet Planetary Health, vol. 5, no. 1, pp. e50e62, Jan. 2021, doi: 10.1016/S2542-5196(20)30277-1.
R. B. Sitepu et al., Peningkatan Kreativitas dan Kapasitas Produksi Kerajinan Tangan Berbasis AI menuju SDGs pada Handmade House di Kelurahan Kebraon Surabaya, Jurnal Leverage, Engagement, Empowerment of Community (LeECOM), vol. 6, no. 2, Art. no. 2, Nov. 2024, doi: 10.37715/leecom.v6i2.5050.
S. Manzoor et al., Sustainable development goals through reducing food loss and food waste: A comprehensive review, Future Foods, vol. 9, p. 100362, June 2024, doi: 10.1016/j.fufo.2024.100362.
M. Meenu, C. Kurade, B. C. Neelapu, S. Kalra, H. S. Ramaswamy, and Y. Yu, A concise review on food quality assessment using digital image processing, Trends in Food Science & Technology, vol. 118, pp. 106124, Dec. 2021, doi: 10.1016/j.tifs.2021.09.014.
P. Das et al., Recent advances on artificial intelligence-based approaches for food adulteration and fraud detection in the food industry: Challenges and opportunities, Food Chemistry, vol. 468, p. 142439, Mar. 2025, doi: 10.1016/j.foodchem.2024.142439.
X. He, D. Wang, and Z. Qu, An Improved YOLOv3 Model for Asian Food Image Recognition and Detection, OJAppS, vol. 11, no. 12, pp. 12871306, 2021, doi: 10.4236/ojapps.2021.1112098.
F. Jubayer et al., Detection of mold on the food surface using YOLOv5, Curr Res Food Sci, vol. 4, pp. 724728, 2021, doi: 10.1016/j.crfs.2021.10.003.
Z. Wu, Y. He, D. Huo, Z. Zhu, Y. Yang, and Z. Du, Multi-Scale Attention-Augmented YOLOv8 for Real-Time Surface Defect Detection in Fresh Soybeans, Processes, vol. 13, no. 10, p. 3040, Oct. 2025, doi: 10.3390/pr13103040.
H. Wang, X. Guo, S. Zhang, G. Li, Q. Zhao, and Z. Wang, Detection and recognition of foreign objects in Pu-erh Sun-dried green tea using an improved YOLOv8 based on deep learning, PLOS ONE, vol. 20, no. 1, p. e0312112, Jan. 2025, doi: 10.1371/journal.pone.0312112.
A. Karabay, H. A. Varol, and M. Y. Chan, Improved food image recognition by leveraging deep learning and data-driven methods with an application to Central Asian Food Scene, Sci Rep, vol. 15, no. 1, p. 14043, Apr. 2025, doi: 10.1038/s41598-025-95770-9.
K. Fu and Y. Dai, Recognizing Multiple Ingredients in Food Images Using a Single-Ingredient Classification Model, International Journal of Intelligent Information Technologies (IJIIT), vol. 20, no. 1, pp. 121, 2024, doi: 10.4018/IJIIT.360782.
L. Zhou et al., General Model for Manufacturing Defect Detection Crossing Multiple Products, in 2023 International Conference on Machine Learning and Applications (ICMLA), Dec. 2023, pp. 15951600. doi: 10.1109/ICMLA58977.2023.00241.
I. N. C. Wijaya, N. K. D. Irwanti, and K. Astiari, Implementing Food Safety to Produce Good Food Quality during the Covid-19 Pandemic at Taco Casa Canggu, International Journal of Glocal Tourism, vol. 3, no. 1, pp. 3847, Mar. 2022, doi: 10.58982/injogt.v3i1.173.
D. Arsenio, Y. Abdurrahman, A. L. Tania, and N. Idaman, PERAN DAN PRAKTIK ARTIFICIAL INTELLIGENCE TERHADAP UMKM: SYSTEMATIC LITERATURE REVIEW, Jurnal Media Informatika, vol. 6, no. 1, pp. 470477, Nov. 2024.
K. Agrawal, P. Goktas, M. Holtkemper, C. Beecks, and N. Kumar, AI-driven transformation in food manufacturing: a pathway to sustainable efficiency and quality assurance, Front. Nutr., vol. 12, Mar. 2025, doi: 10.3389/fnut.2025.1553942.
Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian, Petunjuk Teknis Identifikasi Beras Tidak Layak Konsumsi. 2015.
D. Haryadi, S. H. Y. Tyas, A. Kuncoro, F. F. P. Putra, and A. Ariyanto, Identifikasi Citra Kualitas Minyak Kelapa Sawit Berbasis Android Menggunakan Algoritma Convolutional Neural Network, Jurnal Rekayasa Elektrika, vol. 18, no. 4, Art. no. 4, Dec. 2022, doi: 10.17529/jre.v18i4.28617.
D. P. Parahana, Identifikasi Kualitas Kesegaran Susu Kambing Melalui Pengolahan Citra Digital Menggunakan Metode Learning Vector Quantization (LVQ), Sci-tech Journal, vol. 1, no. 1, Art. no. 1, June 2022, doi: 10.56709/stj.v1i1.17.
A. A. Mujiono, K. Kartini, and E. Y. Puspaningrum, IMPLEMENTASI MODEL HYBRID CNN-SVM PADA KLASIFIKASI KONDISI KESEGARAN DAGING AYAM, JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, Art. no. 1, Mar. 2024, doi: 10.36040/jati.v8i1.8855.
A. Tirtana and R. S. Irawan, Implementasi Convolutional Neural Network dengan Arsitektur MobileNetV2 Untuk Pengklasifikasi Kesegeran Daging, DoubleClick: Journal of Computer and Information Technology, vol. 8, no. 1, Art. no. 1, Aug. 2024, doi: 10.25273/doubleclick.v8i1.20946.
N. P. D. A. S. Dewi, M. W. A. Kesiman, I. M. G. Sunarya, I. G. A. A. D. Indradewi, and I. G. Andika, TPHerbleaf: Dataset Untuk Klasifikasi Jenis Daun Tumbuhan Herbal Berdasarkan Lontar Usada Taru Pramana, Jurnal RESISTOR (Rekayasa Sistem Komputer), vol. 6, no. 2, Art. no. 2, Aug. 2023, doi: 10.31598/jurnalresistor.v6i2.1421.
M. F. Golfantara, PENGGUNAAN ALGORITMA YOLO V8 UNTUK IDENTIFIKASI REMPAH-REMPAH, Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, Art. no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5221.
A. Kuswantori and D. J. Suroso, Fish Detection and Classification using YOLOv8 for Automated Sorting Systems, Indonesian Journal of Artificial Intelligence and Data Mining, vol. 7, no. 2, Art. no. 2, July 2024, doi: 10.24014/ijaidm.v7i2.30967.
T. Li, L. Zhang, and J. Lin, Precision agriculture with YOLO-Leaf: advanced methods for detecting apple leaf diseases, Front. Plant Sci., vol. 15, Oct. 2024, doi: 10.3389/fpls.2024.1452502.
A. E. Farhan, P. Prajoko, and A. Pambudi, PENDETEKSIAN KANDUNGAN GULA DAN KARBOHIDRAT PADA UMBI-UMBIAN DENGAN METODE YOLO (YOU ONLY LOOK ONCE) v8, JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, Art. no. 5, Sept. 2024, doi: 10.36040/jati.v8i5.10891.
G. N. Rizkatama, A. Nugroho, and A. F. Suni, Sistem Cerdas Penghitung Jumlah Mobil untuk Mengetahui Ketersediaan Lahan Parkir berbasis Python dan YOLO v4, Edu Komputika Journal, vol. 8, no. 2, pp. 9199, Dec. 2021, doi: 10.15294/edukomputika.v8i2.47865.
D. N. Alfarizi, R. A. Pangestu, D. Aditya, M. A. Setiawan, and P. Rosyani, Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis, AI dan SPK: Jurnal Artificial Intelligent dan Sistem Penunjang Keputusan, vol. 1, no. 1, pp. 5463, June 2023.
S. Jupiyandi, F. R. Saniputra, Y. Pratama, M. R. Dharmawan, and I. Cholissodin, Pengembangan Deteksi Citra Mobil untuk Mengetahui Jumlah Tempat Parkir Menggunakan CUDA dan Modified YOLO, Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 4, pp. 413419, July 2019, doi: 10.25126/jtiik.2019641275.
Y. Yanto, F. Aziz, and I. Irmawati, YOLO-V8 PENINGKATAN ALGORITMA UNTUK DETEKSI PEMAKAIAN MASKER WAJAH, JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, pp. 14371444, Oct. 2023, doi: 10.36040/jati.v7i3.7047.
F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM, JATI, vol. 12, no. 1, pp. 6477, Mar. 2022, doi: 10.34010/jati.v12i1.6674.
M. Meenu, C. Kurade, B. C. Neelapu, S. Kalra, H. S. Ramaswamy, and Y. Yu, A concise review on food quality assessment using digital image processing, Trends in Food Science & Technology, vol. 118, pp. 106124, Dec. 2021, doi: 10.1016/j.tifs.2021.09.014.
I. W. A. Purnawibawa, I. N. Purnama, and I. N. Y. A. Wijaya, Komparasi Algoritme K-Nearest Neighbors Dan Support Vector Machines Dalam Prediksi Layanan Produk ICONNET, Progresif: Jurnal Ilmiah Komputer, vol. 18, no. 2, pp. 271282, July 2022, doi: 10.35889/progresif.v18i2.894.
H. A. Pitoyo, Implementasi metode support vector machine untuk klasifikasi daun manga berdasarkan tekstur daun, bachelorThesis, Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta, 2020. Accessed: Sept. 21, 2025. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/51569
R. Rosalina and A. Wijaya, Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning, Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, Dec. 2020, doi: 10.28932/jutisi.v6i3.2857.
N. F. Y. P. Putra and S. S. Arrie Kurniawardhani, Analisis Pengaruh Kelengkapan Anotasi terhadap Kinerja Model YOLOv11 dalam Deteksi Multi Objek Buah, AUTOMATA, vol. 6, no. 2, Aug. 2025, Accessed: Sept. 21, 2025. [Online]. Available: https://journal.uii.ac.id/AUTOMATA/article/view/41899
K. Alomar, H. I. Aysel, and X. Cai, Data Augmentation in Classification and Segmentation: A Survey and New Strategies, Journal of Imaging, vol. 9, no. 2, p. 46, Feb. 2023, doi: 10.3390/jimaging9020046.
F. Chollet, Deep Learning with Python, Second Edition. New York: Manning Publications Co. LLC, 2021.
J. Terven, D.-M. Crdova-Esparza, and J.-A. Romero-Gonzlez, A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS, Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 16801716, Dec. 2023, doi: 10.3390/make5040083.
A. D. Putra and G. E. Saputra, Implementation of YOLOv8 Algorithm for Web-Based Detection of Coffee Fruit Ripeness, Journal of Artificial Intelligence and Software Engineering, vol. 5, no. 2, pp. 432445, June 2025, doi: 10.30811/jaise.v5i2.6730.
Ultralytics, Configuration. Accessed: Sept. 22, 2025. [Online]. Available: https://docs.ultralytics.com/usage/cfg
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Putu Dita Ariani Sukma Dewi, Jiyestha Aji Dharma Aryasa, I Gede Hendrayana, I Made Ade Prayoga, Sulin Monica Putri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.















