Genre-Based Sentiment and Emotion System for Audience Insight
DOI:
https://doi.org/10.38043/tiers.v6i2.7183Keywords:
genre, sentiment, emotion, machine learning, CRISP-DMAbstract
Movies can influence people’s moods in different ways depending on film genre. Fear is commonly induced by horror films, whereas joy is typically associated with comedy. Understanding how genre-based expectations shape audience emotions offers valuable insights for producers and digital platforms. However, previous studies have only briefly examined this relationship, with most focusing on general sentiment analysis. This study develops a genre-based sentiment and emotion model to analyze how film genres influence audience reactions. The Cross-Industry Standard Process for Data Mining (CRISP-DM) framework was applied to 46,173 IMDb reviews using Term Frequency–Inverse Document Frequency (TF-IDF) features and three machine learning models: Logistic Regression, Linear Support Vector Classification, and One-vs-Rest Logistic Regression. The results show that Fear (0.704) and Anger (0.684) are the most dominant emotions, indicating that audiences tend to be more emotionally engaged with intense genres. The model was also implemented in a Flask–React web-based system that allows users to analyze and visualize reviews in real time. These findings provide practical implications for filmmakers, producers, and streaming platforms in adjusting genre design, content recommendation, and promotional strategies to align with audience emotional responses.
Downloads
References
H. Nuraliza, O. N. Pratiwi, and F. Hamami, Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance, J. Mirai Manaj., vol. 7, no. 1, pp. 117, Aug. 2022, doi: https://doi.org/10.37531/mirai.v7i1.2222.
Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes, INSOLOGI J. Sains dan Teknol., vol. 1, no. 4, pp. 411423, Aug. 2022, doi: 10.55123/insologi.v1i4.770.
B. Paneru, B. Thapa, and B. Paneru, Sentiment analysis of movie reviews: A flask application using CNN with RoBERTa embeddings, Syst. Soft Comput., vol. 7, pp. 19, Dec. 2025, doi: 10.1016/j.sasc.2025.200192.
H. Shofiyyah, T. Indah, F. M. Jannah, and Natasya Alya Putri, Pengaruh Jenis Tayangan Film Comedy Terhadap Mood Positif Pada Mahasiswa Akhir, J. Psychol. Today, vol. 1, no. 4, pp. 233241, Dec. 2023, [Online]. Available: https://digamed.net/index.php/psychologytoday/article/view/197/31
. alkan, Film Genres and Emotions: Genres Watched by Netflix Trkiye Viewers and Emotion Variations During the Pandemic, Erciyes letiim Derg., vol. 10, no. 1, pp. 122, Jan. 2023, doi: 10.17680/erciyesiletisim.1154927.
R. P. A. L. Fajar and T. Lestari, Pengaruh Film Horor Terhadap Perkembangan Kepribadian Dan Emosional Anak, J. Kaji. Gend. dan Anak, vol. 5, no. 1, pp. 1726, Jun. 2021, doi: 10.24952/gender.v5i1.3731.
R. N. Masaoy and A. F. Ramdhan, Kultivasi di Era Digital: Studi Kasus Pada Anak-anak yang Gemar Menonton Film Horor di Cijati Majalengka, J. Mhs. Sos. Humaniora), vol. 1, no. 1, pp. 143156, Sep. 2024, doi: 10.31949/jumash.v1i1.11330.
I. L. Esa, Chairunnisa, S. R. Khoirunnisa, N. Mona, and S. F. N. Zaferina, The Effect of Watching Horror Film on Health Children and Adolescents in Indonesia, in The 6th International Conference on Vocational Education Applied Science and Technology (ICVEAST 2023), Atlantis Press SARL, 2023, pp. 521532. doi: 10.2991/978-2-38476-132-6_46.
M. I. Wardah and S. D. Putra, Implementasi Machine Learning Untuk Rekomendasi Film Di Imdb Menggunakan Collaborative Filtering Berdasarkan Analisa Sentimen IMDB, J. Manajamen Inform. Jayakarta, vol. 2, no. 3, pp. 243249, Jul. 2022, doi: 10.52362/jmijayakarta.v2i3.868.
D. N. M. Tampubolon, V. V. Hulu, R. O. Sipahutar, and O. Sihombing, Analisis Prediksi Genre Film Pada Internet Movie Database Indonesia Menggunakan Metode Long Short Term Memory, J. Tekinkom (Teknik Inf. Dan Komputer), vol. 6, no. 2, pp. 290298, Dec. 2023, doi: 10.37600/tekinkom.v6i2.925.
D. A. Moreno-Galvn, R. Lpez-Santilln, L. C. Gonzlez-Gurrola, M. Montes-Y-Gmez, F. Snchez-Vega, and A. P. Lpez-Monroy, Automatic movie genre classification & emotion recognition via a BiProjection Multimodal Transformer, Inf. Fusion, vol. 113, pp. 115, Jan. 2025, doi: 10.1016/j.inffus.2024.102641.
E. Mishra, P. Nikam, S. Vidhyadharan, and R. Cheruvalath, An affect-based approach to detect collective sentiments of film audience: Analyzing emotions and attentions, Acta Psychol. (Amst)., vol. 230, pp. 18, Oct. 2022, doi: 10.1016/j.actpsy.2022.103736.
P. S. Poshe, D. V. A. Bharadi, G. A. Yadav, and R. S. Nandiwadekar, Movie Genre Prediction and Sentiment Analysis Using Natural Language Processing, IRE Journals, vol. 4, no. 11, pp. 6368, May 2021, [Online]. Available: https://www.irejournals.com/paper-details/1702699
Mureed Hussain and M. Naseer, Comparative Analysis of Logistic Regression, LSTM, and Bi-LSTM Models for Sentiment Analysis on IMDB Movie Reviews, J. Artif. Intell. Comput., vol. 2, no. 1, pp. 18, Jun. 2024, doi: 10.57041/6t2gfw23.
J. Almeida, L. Vilaa, I. N. Teixeira, and P. Viana, Emotion identification in movies through facial expression recognition, Appl. Sci., vol. 11, no. 15, pp. 119, Jun. 2021, doi: 10.3390/app11156827.
N. G. Ramadhan and T. I. Ramadhan, Analysis Sentiment Based on IMDB Aspects from Movie Reviews using SVM, Sink. J. dan Penelit. Tek. Inform., vol. 7, no. 1, pp. 3945, Jan. 2022, doi: 10.33395/sinkron.v7i1.11204.
J. E. Br Sinulingga and H. C. K. Sitorus, Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF, J. Manaj. Inform., vol. 14, no. 1, pp. 4253, Apr. 2024, doi: 10.34010/jamika.v14i1.11946.
D. S. Ramdan, R. D. Apnena, and C. A. Sugianto, Film Review Sentiment Analysis: Comparison of Logistic Regression and Support Vector Classification Performance Based on TF-IDF, J. Appl. Intell. Syst., vol. 8, no. 3, pp. 341352, Nov. 2023, doi: 10.33633/jais.v8i3.9090.
M. A. Faridi et al., Sentimen Analisis Review Film Pada IMDb Menggunakan Algoritma Logistic Regression, JITSI J. Ilm. Teknol. Sist. Inf., vol. 6, no. 2, pp. 132139, Jun. 2025, doi: 10.62527/jitsi.6.2.422.
A. Hermawan, R. Yusuf, B. Daniawan, and Junaedi, Enhanced sentiment analysis and emotion detection in movie reviews using support vector machine algorithm, Telkomnika (Telecommunication Comput. Electron. Control., vol. 23, no. 1, pp. 138146, Feb. 2025, doi: 10.12928/TELKOMNIKA.v23i1.26377.
Y. Christian, Analysis Study to Detect Student Learning Problems in Online Analysis Study to Detect Student Learning, J. Theor. Appl. Inf. Technol., vol. 100, no. 5, pp. 18751884, Mar. 2022, [Online]. Available: http://www.jatit.org/volumes/Vol100No6/23Vol100No6.pdf
M. I. Adrian and E. A. Laksana, Optimalisasi Parameter Support Vector Machine dengan Algoritma PSO untuk Tugas Klasifikasi Sentimen Ulasan IMDb, J. Algoritm., vol. 22, no. 1, pp. 288299, Jun. 2025, doi: 10.33364/algoritma/v.22-1.2306.
Sutriawan, Muljono, Khairunnisa, Z. Alamin, T. A. Lorosae, and S. Ramadhan, Improving Performance Sentiment Movie Review Classification Using Hybrid Feature TFIDF, N-Gram, Information Gain and Support Vector Machine, Math. Model. Eng. Probl., vol. 11, no. 2, pp. 375384, Feb. 2024, doi: 10.18280/mmep.110209.
Herman and Y. Christian, Analisis Performa Akademik Mahasiswa Menggunakan Distributed Random Forest, J. Appl. Informatics Comput., vol. 6, no. 2, pp. 180186, Dec. 2022, doi: https://doi.org/10.30871/jaic.v6i2.4854.
Y. Christian and A. Ricardo Hannuella, Analisa Clustering Untuk Mengklasifikasi Kinerja Akademik di Lembaga Pendidikan, Technol. J. Ilm., vol. 15, no. 4, pp. 775786, Oct. 2024, doi: 10.31602/tji.v15i4.16325.
A. Ocal, Cinematic Narratives as Socio-Technical Systems: Emotion Mining and Script Audience Emotional Fidelity, Systems, vol. 13, no. 11, pp. 137, Nov. 2025, doi: 10.3390/systems13110994.
N. Pavitha et al., Movie recommendation and sentiment analysis using machine learning, Glob. Transitions Proc., vol. 3, no. 1, pp. 279284, Jun. 2022, doi: 10.1016/j.gltp.2022.03.012.
M. T. Razaq, D. Nurjanah, and H. Nurrahmi, Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier dengan Fitur TF-IDF, in e-Proceding of Engineering, 2023, pp. 16981712. [Online]. Available: https://repositori.telkomuniversity.ac.id/home/catalog/id/181205/slug/analisis-sentimen-review-film-menggunakan-naive-bayes-classifier-dengan-fitur-tf-idf.html
A. J. Abimanyu, M. Dwifebri, and W. Astuti, Sentiment Analysis on Movie Review from Rotten Tomatoes Using Logistic Regression and Information Gain Feature Selection, Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 162170, Jun. 2023, doi: 10.47065/bits.v5i1.3595.
C. Schrer, F. Kruse, and J. M. Gmez, A Systematic Literature Review on Applying CRISP-DM Process Model, Procedia Comput. Sci., vol. 181, pp. 526534, Jan. 2021, doi: 10.1016/j.procs.2021.01.199.
D. Drungilas, I. Ramaauskas, and M. Kurmis, Emotion Recognition in Usability Testing: A Framework for Improving Web Application UI Design, Appl. Sci., vol. 14, no. 11, pp. 119, May 2024, doi: 10.3390/app14114773.
F. Rehman, IMDb Movie Reviews Genres Description and Emotions. 2023. [Online]. Available: https://www.kaggle.com/datasets/fahadrehman07/movie-reviews-and-emotion-dataset
M. Z. Naeem, F. Rustam, A. Mehmood, Mui-zzud-din, I. Ashraf, and G. S. Choi, Classification of movie reviews using term frequency-inverse document frequency and optimized machine learning algorithms, PeerJ Comput. Sci., vol. 8, pp. 128, Mar. 2022, doi: 10.7717/PEERJ-CS.914.
R. Ramachandran, S. Sudhir, and A. B. Unnithan, Exploring the relationship between emotionality and product star ratings in online reviews, IIMB Manag. Rev., vol. 33, no. 4, pp. 299308, Dec. 2021, doi: 10.1016/j.iimb.2021.12.002.
V. V. N. Raju et al., Enhancing emotion prediction using deep learning and distributed federated systems with SMOTE oversampling technique, Alexandria Eng. J., vol. 108, pp. 498508, Dec. 2024, doi: 10.1016/j.aej.2024.07.081.
I. Zakarija, F. kopljanac-Maina, H. Marui, and B. Blakovi, A Sentiment Analysis Model Based on User Experiences of Dubrovnik on the Tripadvisor Platform, Appl. Sci., vol. 14, no. 18, pp. 1-27[1] I. Zakarija, F. kopljanac-Maina, H. Maru, Sep. 2024, doi: 10.3390/app14188304.
A. M. Golubovikj, O. Mokryn, and M. Tkali, Intended Movie Experience: Linking Elicited Emotions to Eudaimonic and Hedonic Characteristics, in CEUR Workshop Proceedings, 2024, pp. 103112. [Online]. Available: https://ceur-ws.org/Vol-3815/paper9.pdf
P. Nandwani and R. Verma, A review on sentiment analysis and emotion detection from text, Soc. Netw. Anal. Min., vol. 11, no. 1, pp. 119, Aug. 2021, doi: 10.1007/s13278-021-00776-6.
Y. Albalawi, J. Buckley, and N. S. Nikolov, Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media, J. Big Data, vol. 8, no. 1, Jul. 2021, doi: 10.1186/s40537-021-00488-w.
M. S. A. Alzaidi et al., An Efficient Fusion Network for Fake News Classification, Mathematics, vol. 12, no. 20, pp. 120, Oct. 2024, doi: 10.3390/math12203294.
Z. Ahanin, M. A. Ismail, N. S. S. Singh, and A. AL-Ashmori, Hybrid Feature Extraction for Multi-Label Emotion Classification in English Text Messages, Sustain., vol. 15, no. 16, Aug. 2023, doi: 10.3390/su151612539.
A. Salhi, R. Alshamrani, A. Althbiti, A. Ismail, and M. Abd-elrahman, Optimizing high dimensional data classification with a hybrid AI driven feature selection framework and machine learning schema, Sci. Rep., vol. 15, no. 1, pp. 127, Oct. 2025, doi: 10.1038/s41598-025-08699-4.
N. A. Azeez, S. Misra, D. O. Ogaraku, and A. P. Abidoye, A Predictive Model for Benchmarking the Performance of Algorithms for Fake and Counterfeit News Classification in Global Networks, Sensors, vol. 24, no. 17, pp. 134, Sep. 2024, doi: 10.3390/s24175817.
A. Saranya and R. Subhashini, A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends, Decis. Anal. J., vol. 7, pp. 114, Jun. 2023, doi: 10.1016/j.dajour.2023.100230.
G. Huang, Y. Li, S. Jameel, Y. Long, and G. Papanastasiou, From explainable to interpretable deep learning for natural language processing in healthcare: How far from reality?, Comput. Struct. Biotechnol. J., vol. 24, pp. 362373, Dec. 2024, doi: 10.1016/j.csbj.2024.05.004.
P. Fantozzi and M. Naldi, The Explainability of Transformers: Current Status and Directions, Computers, vol. 13, no. 4, pp. 134, Apr. 2024, doi: 10.3390/computers13040092.
L. Zhang, Features extraction based on Naive Bayes algorithm and TF-IDF for news, PLoS One, vol. 20, no. 7, pp. 117, Jul. 2025, doi: 10.1371/journal.pone.0327347.
W. Hu, Q. Fan, H. Yan, X. Xu, S. Huang, and K. Zhang, A Survey of Multi-Label Text Classification Under Few-Shot Scenarios, Appl. Sci., vol. 15, no. 16, pp. 142, Aug. 2025, doi: 10.3390/app15168872.
L. Wei, Y. Li, Y. Zhu, B. Li, and L. Zhang, Prompt Tuning for Multi-Label Text Classification: How to Link Exercises to Knowledge Concepts?, Appl. Sci., vol. 12, no. 20, pp. 113, Oct. 2022, doi: 10.3390/app122010363.
Y. Ni and W. Ni, A multi-label text sentiment analysis model based on sentiment correlation modeling, Front. Psychol., vol. 15, pp. 19, Dec. 2024, doi: 10.3389/fpsyg.2024.1490796.
C. Miller, T. Portlock, D. M. Nyaga, and J. M. OSullivan, A review of model evaluation metrics for machine learning in genetics and genomics, Front. Bioinforma., vol. 4, pp. 113, Sep. 2024, doi: 10.3389/fbinf.2024.1457619.
M. Owusu-Adjei, J. Ben Hayfron-Acquah, T. Frimpong, and G. Abdul-Salaam, Imbalanced class distribution and performance evaluation metrics: A systematic review of prediction accuracy for determining model performance in healthcare systems, PLOS Digit. Heal., vol. 2, no. 11, pp. 119, Nov. 2023, doi: 10.1371/journal.pdig.0000290.
N. Ashraf, L. Khan, S. Butt, H. T. Chang, G. Sidorov, and A. Gelbukh, Multi-label emotion classification of Urdu tweets, PeerJ Comput. Sci., vol. 8, pp. 125, Apr. 2022, doi: 10.7717/peerj-cs.896.
M. S. Durkee et al., Generalizations of the Jaccard index and Srensen index for assessing agreement across multiple readers in object detection and instance segmentation in biomedical imaging, J. Med. Imaging, vol. 10, no. 6, pp. 117, Dec. 2023, doi: 10.1117/1.jmi.10.6.065503.
M. C. Hinojosa Lee, J. Braet, and J. Springael, Performance Metrics for Multilabel Emotion Classification: Comparing Micro, Macro, and Weighted F1-Scores, Appl. Sci., vol. 14, no. 21, pp. 121, Oct. 2024, doi: 10.3390/app14219863.
M. Ria Ambrocio Sagum, An Application of Emotion Detection in Sentiment Analysis on Movie Reviews, Turkish J. Comput. Math. Educ., vol. 12, no. 3, pp. 54685474, Apr. 2021, [Online]. Available: https://turcomat.org/index.php/turkbilmat/article/view/2204
S. Su, Sentimental Analysis Applied on Movie Reviews, J. Educ. Humanit. Soc. Sci., vol. 3, pp. 188195, Sep. 2022, doi: 10.54097/ehss.v3i.1685.
A. D. Mahmoodabadi, H. Dehghan, K. Kimiafar, and M. Karami, Usability evaluation methods for hospital information systems: a systematic review, BMC Health Serv. Res., vol. 25, no. 1, pp. 114, Nov. 2025, doi: 10.1186/s12913-025-13745-y.
M. O. D. Jr, A Domain-Specific Evaluation of the Performance of Selected Web-based Sentiment Analysis Platforms, Int. J. Softw. Eng. Comput. Syst., vol. 9, no. 1, pp. 19, Jan. 2023, doi: 10.15282/ijsecs.9.1.2023.1.0105.
M. A. Palomino and F. Aider, Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis, Appl. Sci., vol. 12, no. 17, pp. 121, Aug. 2022, doi: 10.3390/app12178765.
A. G. Silva et al., Procedures of User-Centered Usability Assessment for Digital Solutions: Scoping Review of Reviews Reporting on Digital Solutions Relevant for Older Adults, JMIR Hum. Factors, vol. 8, no. 1, pp. 114, Jan. 2021, doi: 10.2196/22774.
S. Almasi, K. Bahaadinbeigy, H. Ahmadi, and S. Sohrabei, Usability Evaluation of Dashboards: A Systematic Literature Review of Tools, Biomed Res. Int., vol. 2023, no. 1, pp. 111, Feb. 2023, doi: 10.1155/2023/9990933.
K. Kucher, S. Bouchama, A. Ebert, and A. Kerren, Task-based Evaluation of Sentiment Visualization Techniques, in 13th International Conference on Information Visualization Theory and Applications (IVAPP), 2022, pp. 187194. doi: 10.5220/0010916400003124.
F. Caldeira, J. Loureno, and T. Chambel, Multimodal Search and Visualisation of Movies Based on Emotions Along Time in As Movies Go By, SN Comput. Sci., vol. 6, no. 3, pp. 118, Mar. 2025, doi: 10.1007/s42979-025-03690-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suwarno, Wesly, Bayu Syahputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.















