Operating Room Scheduling Optimization Under Surgeon and Nurse Constraints Using Genetic Algorithm
DOI:
https://doi.org/10.38043/tiers.v6i2.7164Keywords:
Operating Room Scheduling, Surgery Duration Prediction, Surgeon PresenceAbstract
Operating room scheduling is a complex problem due to the limited availability of surgeons, nurses, and operating rooms, as well as the variability in surgery durations. Inaccurate predictions or scheduling may cause conflicts such as overlapping surgeon schedules, violations of contamination level restrictions, and unavailability of nurses or rooms, ultimately reducing the quality of hospital services. This study integrates multiprocedure surgery duration prediction using machine learning with scheduling optimization based on genetic algorithms. The prediction model considers the American Society of Anesthesiologists (ASA) physical status classification, patient profiles, and sets of surgical procedures variables. Scheduling optimization employs a lexicographic approach with three main objectives: minimizing patient waiting time, nurse overtime, and operating room idle time, while ensuring surgeon presence during critical phases and nurse availability according to shifts. The results show that the Catboost algorithm achieves the best prediction performance. Incorporating the ASA variable reduces prediction errors by 33.880 minutes in MAE and 55.575 minutes in RMSE compared to model without the ASA feature. The optimization model successfully eliminates all scheduling conflicts, ensuring full compliance with medical procedure constraints. Recovery bed utilization remains efficient, with a maximum of five units used, representing less than 50% of the total capacity.
Downloads
References
B. Vijayakumar, P. J. Parikh, R. Scott, A. Barnes, and J. Gallimore, A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital, Eur. J. Oper. Res., vol. 224, no. 3, pp. 583591, 2013, doi: 10.1016/j.ejor.2012.09.010.
A. Fgener, S. Schiffels, and R. Kolisch, Overutilization and underutilization of operating rooms - insights from behavioral health care operations management, Health Care Manag. Sci., vol. 20, no. 1, pp. 115128, 2017, doi: 10.1007/s10729-015-9343-1.
M. Younespour, A. Atighehchian, K. Kianfar, and E. T. Esfahani, Using mixed integer programming and constraint programming for operating rooms scheduling with modified block strategy, Oper. Res. Heal. Care, vol. 23, p. 100220, 2019, doi: 10.1016/j.orhc.2019.100220.
. Gr, H. M. Alaka, M. Pnarba, and T. Eren, Stochastic operating room scheduling: a new model for solving problem and an approach for determining the factors that affect operation time variations, Soft Comput., vol. 28, no. 5, pp. 39874007, 2024, doi: 10.1007/s00500-023-09369-1.
I. Rahimi and A. H. Gandomi, A Comprehensive Review and Analysis of Operating Room and Surgery Scheduling, Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 16671688, 2021, doi: 10.1007/s11831-020-09432-2.
V. Kayvanfar, M. R. Akbari Jokar, M. Rafiee, S. Sheikh, and R. Iranzad, A new model for operating room scheduling with elective patient strategy, INFOR Inf. Syst. Oper. Res., vol. 59, no. 2, pp. 309332, 2021, doi: 10.1080/03155986.2021.1881359.
M. Fairley, D. Scheinker, and M. L. Brandeau, Improving the efficiency of the operating room environment with an optimization and machine learning model, Health Care Manag. Sci., vol. 22, no. 4, pp. 756767, 2019, doi: 10.1007/s10729-018-9457-3.
Z. Shahabikargar, S. Khanna, A. Sattar, and J. Lind, Improved prediction of procedure duration for elective surgery, Stud. Health Technol. Inform., vol. 239, pp. 133138, 2017, doi: 10.3233/978-1-61499-783-2-133.
A. S. Wahyuni, Linda, Muhammad Kusumawan Herliansyah, Nur Aini Masruroh, Pengembangan Model Penjadwalan Ruang Operasi dan Fasilitas Pendukung Terintegrasi dengan Mempertimbangkan Faktor Ketidakpastian Durasi dan Keterbatasan Sumber Daya, Universitas Gadjah Mada, 2018.
J. J. Wang, Z. Dai, W. Zhang, and J. J. Shi, Operating room scheduling for non-operating room anesthesia with emergency uncertainty, Ann. Oper. Res., vol. 321, no. 12, pp. 565588, 2023, doi: 10.1007/s10479-022-04870-6.
V. Riahi et al., Improving preoperative prediction of surgery duration, BMC Health Serv. Res., vol. 23, no. 1, pp. 115, 2023, doi: 10.1186/s12913-023-10264-6.
O. Babayoff, O. Shehory, M. Shahoha, R. Sasportas, and A. Weiss-Meilik, Surgery duration: Optimized prediction and causality analysis, PLoS One, vol. 17, no. 8 August, pp. 118, 2022, doi: 10.1371/journal.pone.0273831.
K. W. Soh, C. Walker, M. OSullivan, and J. Wallace, An Evaluation of the Hybrid Model for Predicting Surgery Duration, J. Med. Syst., vol. 44, no. 2, 2020, doi: 10.1007/s10916-019-1501-4.
R. Alizadeh, J. Rezaeian, M. Abedi, and R. Chiong, A modified genetic algorithm for non-emergency outpatient appointment scheduling with highly demanded medical services considering patient priorities, Comput. Ind. Eng., vol. 139, no. February 2019, p. 106106, 2020, doi: 10.1016/j.cie.2019.106106.
S. Makboul, S. Kharraja, and A. El Hilali Alaoui, A Hybrid Metaheuristic to Solving the Master Surgical Schedule under Downstream Beds Capacity, 2022 IEEE 6th Int. Conf. Logist. Oper. Manag. GOL 2022, pp. 16, 2022, doi: 10.1109/GOL53975.2022.9820396.
L. R. Kroer, K. Foverskov, C. Vilhelmsen, A. S. Hansen, and J. Larsen, Planning and scheduling operating rooms for elective and emergency surgeries with uncertain duration, Oper. Res. Heal. Care, vol. 19, pp. 107119, 2018, doi: 10.1016/j.orhc.2018.03.006.
M. K. H. Aisyah Ashrinawati S, Penjadwalan Ruang Operasi dengan Mempertimbangkan Prioritas Pasien Berdasarkan Analisis Clustering dengan Menggunakan Algoritma Genetika, Universitas Gadjah Mada, 2015.
P. M. Castro and I. Marques, Operating room scheduling with Generalized Disjunctive Programming, Comput. Oper. Res., vol. 64, pp. 262273, 2015, doi: 10.1016/j.cor.2015.06.002.
T. Khaniyev, E. Kay, and R. Gll, Next-day operating room scheduling with uncertain surgery durations: Exact analysis and heuristics, Eur. J. Oper. Res., vol. 286, no. 1, pp. 4962, 2020, doi: 10.1016/j.ejor.2020.03.002.
Ade Laras Apriliani, Pemodelan Matematika Masalah Penjadwalan Harian Perawat Bedah untuk Menangani Kasus Bedah Elektif di Ruang Operasi, Universitas Gadjah Mada, 2021.
W. Xiang, J. Yin, and G. Lim, An ant colony optimization approach for solving an operating room surgery scheduling problem, Comput. Ind. Eng., vol. 85, pp. 335345, 2015, doi: 10.1016/j.cie.2015.04.010.
M. K. H. Deny Ratna Yuniartha, Model Penjadwalan Ruang Operasi Mempertahankan Preferensi Dokter Bedah dan Batasan Kapasitas Post Anesthesia Care Unit, Universitas Gadjah Mada, 2023.
S. Batun, B. T. Denton, T. R. Huschka, and A. J. Schaefer, Operating room pooling and parallel surgery processing under uncertainty, INFORMS J. Comput., vol. 23, no. 2, pp. 220237, 2011, doi: 10.1287/ijoc.1100.0396.
G. V and R. N, Efficiency Enhancement of Machine Learning Approaches through the Impact of Preprocessing Techniques, 2021 6th Int. Conf. Signal Process. Comput. Control, pp. 191196, 2021, doi: 10.1109/ISPCC53510.2021.9609474.
W. N. Hao Shuang, LI Guoliang, FENG Jianhua, Survey of structured data cleaning methods, J. Tsinghua Univ. Technol., vol. 1, no. 1, pp. 16891699, 2018, [Online]. Available: http://www.biblioteca.pucminas.br/teses/Educacao_PereiraAS_1.pdf%0Ahttp://www.anpocs.org.br/portal/publicacoes/rbcs_00_11/rbcs11_01.htm%0Ahttp://repositorio.ipea.gov.br/bitstream/11058/7845/1/td_2306.pdf%0Ahttps://direitoufma2010.files.wordpress.com/2010/03/emi
E. Leigard, D. Hertzberg, D. Konrad, and M. Bell, Increasing perioperative age and comorbidity: a 16-year cohort study at two University hospital sites in Sweden, Int. J. Surg., vol. 110, no. 7, pp. 41244131, 2024, doi: 10.1097/JS9.0000000000001326.
N. Lomarat, T. Chinnachoti, S. Sakulnamanek, and S. Sriwongpornthan, Agreement of evolution ASA-PS classification evaluated by anesthesia residents and research team and association with perioperative complications, J. Med. Assoc. Thail., vol. 102, no. 12, pp. 12961301, 2019.
I. Mustafa, H. Bae, N. Ichsan, and C. Yulim, Data pixelization for predicting completion time of events, Neurocomputing, vol. 374, pp. 6476, 2020, doi: 10.1016/j.neucom.2019.09.061.
X. Xiang, S. Duan, H. Pan, P. Han, J. Cao, and C. Liu, One-hot Encoding to Privacy-preserving Synthetic Electronic Health Records Embedding, Proc. 2020 Int. Conf. Cybersp. Innov. Adv. Technol. (CIAT 2020), pp. 407413, 2021, doi: https://doi.org/10.1145/3444370.3444605.
P. Shahhosseini, M. B.-J. of I. and Systems, and undefined 2021, A new genetic algorithm to solve integrated operating room scheduling problem with multiple objective functions, Jise.Ir, vol. 13, no. 4, pp. 262287, 2021, [Online]. Available: https://www.jise.ir/&url=http:/www.jise.ir/article_137239_82c24f8404f2e119394a17f7fc6e650a.pdf
Y. Pan and L. Zhang, Data-driven estimation of building energy consumption with multi-source heterogeneous data, Appl. Energy, vol. 268, no. February, p. 114965, 2020, doi: 10.1016/j.apenergy.2020.114965.
L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, CatBoost: unbiased boosting with categorical features, Adv. Neural Inf. Process. Syst., no. Section 4, pp. 123, 2018.
J. Hancock and T. M. Khoshgoftaar, Medicare Fraud Detection using CatBoost, IEEE 21st Int. Conf. Inf. Reuse Integr. Data Sci., pp. 97103, 2020, doi: 10.1109/IRI49571.2020.00022.
V. . Stiebel and B. Nightingale, Medical Illness in Psychiatric Disease, Behav. Emergencies Healthc. Provid., no. Medical Illness in Psychiatric Disease. (n.d.). Behavioral Emergencies for Healthcare Providers., 2021, doi: https://doi.org/10.1007/978-3-030-52520-0_17.
R. Brown and E. Thorsteinsson, Comorbidity: What Is It and Why Is It Important?, Palgrave Macmillan, 2020, doi: https://doi.org/10.1007/978-3-030-32545-9_1.
B. Kurnick, J. Madrigal, A. Y. Han, and P. Benharash, Does American Society of Anesthesiologist classification effect hospital course and postoperative complications following oral and maxillofacial surgical procedures, Oral Surg. Oral Med. Oral Pathol. Oral Radiol., vol. 136, no. 2, pp. 136141, 2023, doi: 10.1016/j.oooo.2023.01.003.
S. Lim, L. M. Carabini, R. B. Kim, R. Khanna, N. S. Dahdaleh, and Z. A. Smith, Evaluation of American Society of Anesthesiologists classification as 30-day morbidity predictor after single-level elective anterior cervical discectomy and fusion, Spine J., vol. 17, no. 3, pp. 313320, 2017, doi: 10.1016/j.spinee.2016.09.018.
Yevsieieva et al., Perioperative risk stratification in patients undergoing multi-resection surgeries, Emerg. Med., 2024, doi: 10.22141/2224-0586.20.5.2024.1727.
L. Shi, Y. Wu, and Y. Zhou, A hybrid immigrants strategy for dynamic multi-objective optimization, 2018 Tenth Int. Conf. Adv. Comput. Intell., pp. 589593, 2018, doi: 10.1109/ICACI.2018.8377526.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ayu Swilugar, Muhammad Kusumawan Herliansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.















