Marvel Movie Recommendation System Using Hybrid Item-Based and Content-Based Filtering Methods

Authors

  • Daffa Rizki Putra Noordi Universitas Duta Bangsa
  • Herliyani Hasanah Universitas Duta Bangsa
  • Sri Sumarlinda Universitas Duta Bangsa

DOI:

https://doi.org/10.38043/tiers.v5i1.5209

Keywords:

Recommendation System, Marvel Film, Hybrid Filtering, Item-Based Filtering, Content-Based Filtering

Abstract

Currently, there are so many movie genres available to the general public, making it difficult for viewers to choose a movie. One of the most popular movies is the “Marvel Movies” or MCU (Marvel Cinematic Universe), which has become the highest grossing franchise of all time with 90 movies released. The large number of movie titles makes it difficult for people to choose which movie to watch. Therefore, a Marvel movie recommendation system is needed using a hybrid item-based and content-based filtering method. The content-based method calculates the similarity between movies by identifying similar Marvel movies based on content such as genre, actor, director, and synopsis. Meanwhile, item-based completes content-based recommendations by considering user preferences. The reason for using the hybrid item-based and content-based filtering method is to be able to produce more accurate recommendations than a single method. The types and sources of data used are secondary data from journals and the internet (Imdb and Movielens), as well as datasets about Marvel movies. From the results of testing the hybrid model, the precision value is 0.8 or 80% which indicates that the model is accurate. In item-based filtering testing, the similarity result of 0.68 shows good item similarity. In the content-based filtering test, the highest similarity is 0.14 and the lowest similarity is 0.10 which shows that the similarity between the searched content and the generated content is relevant.

Downloads

Download data is not yet available.

References

. Agustian, E. R., & Nugroho, E. P. (2020). Sistem Rekomendasi Film Menggunakan Metode Collaborative Filtering dan K-Nearest Neighbors. JATIKOM: Jurnal Aplikasi Dan Teori Ilmu Komputer, 3(1), 18–21.

. Amelia, T., & Pambudi, A. (2023). Rekomendasi Jurusan Kuliah Berdasarkan Minat dan Kemampuan Menggunakan Metode Content Based Filtering. Technologia: Jurnal Ilmiah, 14(3), 245–253.

. Arfisko, H. H., & Wibowo, A. T. (2022). Sistem Rekomendasi Film Menggunakan Metode Hybrid Collaborative Filtering Dan Content-Based Filtering. EProceedings of Engineering, 9(3).

. christiangarciacolon. (2023). Marvel Films. Https://Www.Imdb.Com/List/Ls000024621/.

. Ciaputra, A. T., & Hansun, S. (2020). Rekomendasi Pemilihan Film Dengan Hybrid Filtering Dan Knearest Neighbor. Jurnal Rekayasa Informasi, 9(2), 101–109.

. Fajriansyah, M., Adikara, P. P., & Widodo, A. W. (2021). Sistem Rekomendasi Film Menggunakan Content Based Filtering. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(6), 2188–2199.

. Hadi, I., Santoso, L. W., & Tjondrowiguno, A. N. (2020). Sistem Rekomendasi Film menggunakan User-based Collaborative Filtering dan K-modes Clustering. Jurnal Infra, 8(1), 228–234.

. Hidayat, D., & Putri, A. M. (2022). Mitos dalam Film Gundala (Analisis Monomyth Joseph Campbell). Desainpedia Journal of Urban Design, Lifestyle & Behaviour, 1(2), 50–59.

. Kusuma, A. S., Pratiwi, D. C., & Atina, V. (2023). Sistem Rekomendasi Pemilihan Produk UMKM Berbasis Hybrid Recommendation. Prosiding Seminar Nasional Teknologi Informasi Dan Bisnis, 96–105.

. Mukti, K. T., & Mardhiyah, I. (2022). SISTEM REKOMENDASI PEMBELIAN LISENSI FILM MENGGUNAKAN PENDEKATAN HYBRID FILTERING. Jurnal Riset Sistem Informasi Dan Teknologi Informasi (JURSISTEKNI), 4(3), 127–139.

. Muni, A., & Ihwan, K. (2021). Perangcangan Sistem Informasi Film Berbasis WEB. JUTI UNISI, 5(2), 28–33.

. Nugraha, D., Purboyo, T. W., & Nugrahaeni, R. A. (2021). Sistem Rekomendasi Film Menggunakan Metode User Based Collaborative Filtering. EProceedings of Engineering, 8(5).

. Putraa, I. D. A. C., & Suhartanaa, I. K. G. (n.d.). Sistem Rekomendasi Anime dengan Metode Content Based Filtering.

. Putri, M. W., Muchayan, A., & Kamisutara, M. (2020). Sistem Rekomendasi Produk Pena Eksklusif Menggunakan Metode Content-Based Filtering dan TF-IDF. JOINTECS (Journal of Information Technology and Computer Science), 5(3), 229–236.

. Rizky, M. I., Asror, I., & Murti, Y. R. (2020). Sistem Rekomendasi Program Studi untuk Siswa SMA Sederajat Menggunakan Metode Hybrid Recommendation dengan Content Based Filtering dan Collaborative Filtering. EProceedings of Engineering, 7(1).

. Sari, K. R., Suharso, W., & Azhar, Y. (2020). Pembuatan Sistem Rekomendasi Film dengan Menggunakan Metode Item Based Collaborative Filtering pada Apache Mahout. Jurnal Repositor, 2(6), 767–774.

. Septiani, D., & Isabela, I. (2022). Analisis term frequency inverse document frequency (tf-idf) dalam temu kembali informasi pada dokumen teks. Sistem Dan Teknologi Informasi Indonesia (SINTESIA), 1(2), 81–88.

. Silitonga, P. D. P., & Purba, D. E. R. (2021). Implementasi System Development Life Cycle Pada Rancang Bangun Sistem Pendaftaran Pasien Berbasis Web. Jurnal Sistem Informasi Kaputama (JSIK), 5(2), 196–203.

. Ula, N., Setianingsih, C., & Nugrahaeni, R. A. (2021). Sistem Rekomendasi Lagu Dengan Metode Content Based Filtering Berbasis Website. EProceedings of Engineering, 8(6).

Downloads

Published

2024-06-25

How to Cite

1.
Noordi DRP, Hasanah H, Sumarlinda S. Marvel Movie Recommendation System Using Hybrid Item-Based and Content-Based Filtering Methods. TIERS [Internet]. 2024Jun.25 [cited 2025Jan.15];5(1):13-9. Available from: https://journal.undiknas.ac.id/index.php/tiers/article/view/5209

Issue

Section

Articles