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ABSTRACT  

This study introduces an enhanced Convolutional Autoencoder–Convolutional Neural Network (CAE–CNN) model 

designed for efficient and accurate classification of rice leaf diseases. This study aims to develop an architecture that 

achieves high accuracy while maintaining computational efficiency, serving as an integrative and applicative technical 

innovation for rice disease detection. The proposed architecture integrates a Squeeze and Excitation Block (SE-Block), 

Global Max Pooling (GMP), and Separable Convolution to improve feature extraction while reducing the number of 

parameters and inference time. A total of 7,430 labeled images from five rice disease classes were used for model training 

and evaluation. The model was optimized using Optuna-based hyperparameter tuning and validated through an ablation 

and comparative analysis to assess the impact of each component. Experimental results show that the proposed model 

achieves 99.39% accuracy with only 85,859 parameters, a compact size of 0.28 MB, and inference time at 0.06657 

ms/image with 15,213 FPS. These findings demonstrate that the proposed CAE–CNN effectively combines high accuracy 

and low computational cost, making it highly suitable for real-time and edge-based rice disease classification systems. 
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1. INTRODUCTION 

Rice is a vital staple food for nearly half of the global population, including Indonesia, where over 

90% of people depend on it as their main food source [1]. Despite producing around 54.4 million tonnes 

annually [2], Indonesia rice productivity remains low at 5.14 tonnes per hectare, well below the potential yield 

of 9.2 to 9.5 tonnes [1]. One major factor behind this gap is the prevalence of rice leaf diseases such as Bacterial 

Blight, Tungro, Blast, and Brown Spot, which significantly reduce both yield and quality. As a result, current 

research has concentrated on computational techniques to autonomously identify and categorize such diseases, 

enhancing precision and promoting sustainable agriculture [3]. 

Earlier studies applied digital image processing techniques using traditional classifiers like SVM, k-

NN, and Random Forest. While this model is effective for basic pattern recognition, these models face 
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significant limitations, like SVM depends heavily on kernel selection [4], k-NN is sensitive to noise [5], and 

Random Forest can be computationally intensive [6]. These constraints have driven a shift toward deep 

learning, particularly Convolutional Neural Network (CNN), which can automatically learn spatial features 

and achieve high classification accuracy [7]. However, most CNNs are computationally heavy, with large 

parameter counts and memory requirements [8], making them unsuitable for low-resource environments. 

To address this, researchers have explored lightweight CNNs as well as hybrid architectures that 

combine Convolutional Autoencoders (CAE) with CNN, as reported in previous studies by the authors [9] and 

other research like [10]. CAE is employed because it is capable of producing compact, noise-reduced feature 

representations [10], which helps lower the computational burden of CNNs without losing crucial information. 

Studies have shown that integrating CAE with CNN can reduce both the number of parameters and 

convolutional layers while still achieving high accuracy [9], [10]. Despite the benefits offered by CAE, this 

component still has certain limitations. In particular, the CAE–CNN model with Global Max Pooling (GMP) 

in [9], showed misclassification between visually similar diseases such as Brown Spot and Bacterial Blight due 

to overlapping lesion characteristics under limited lighting or resolution, indicating insufficient discriminative 

channel-level feature modeling. In addition, Boukhlifa and Chibani (2024) [10] reported that CAE-based 

lightweight CNNs struggle to generalize across datasets and real-world conditions due to high variability in 

disease manifestations.  

Building upon this, the present study introduces an optimized CAE–CNN architecture that integrates 

a Squeeze and Excitation Block (SE-Block), GMP, and Separable Convolution within a unified architecture 

for rice leaf disease classification. The CAE is used to learn robust and compact latent features that mitigate 

noise and image quality variations, supporting improved robustness within the evaluated dataset. To alleviate 

the difficulty of distinguishing visually similar disease patterns observed in [9], SE-Blocks are incorporated to 

model inter-channel dependencies and enhance discriminative feature responses [11]. GMP is retained to 

reduce parameter growth and overfitting by suppressing redundant spatial information [12], while Separable 

Convolution further decreases computational complexity without compromising feature expressiveness [13]. 

Unlike prior studies that examined these components separately [9], [11], [12], their joint integration enables 

a balanced trade-off between feature representation and computational efficiency, resulting in reduced 

parameter count, smaller model size, and faster inference. This integrative design provides a practical and 

efficient solution for real-time rice leaf disease detection in resource-constrained agricultural environments. 

2. RESEARCH METHOD 

 

Figure 1. Research Flow 
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The overall workflow of the proposed research is illustrated in Figure 1, outlining each stage from 

data collection to model evaluation. The process begins with dataset preprocessing and augmentation, followed 

by training a CAE integrated with SE-Block, GMP, and Separable Convolution to extract compact feature 

representations. These features are then used by CNN to classify the five rice leaf disease categories. Model 

evaluation is conducted using accuracy, precision, recall, and inference efficiency, ensuring that the final design 

achieves an optimal balance between accuracy and efficiency. 

 

2.1. Research Data 

 
Table 1. Dataset Sources 

Source Dataset Name Number of Images Image Size (Pixels) 

[14] 
Nutrient Deficiency 

Symtoms in Rice 
227 3024 x 3024 

[15] Rice Disease 5.945 1024 x 1024 

[16] 
Rice Disease Image 

Dataset 
3.960 1024 x 1024 

[17] Rice Leaf Disease 3.081 256 x 256 

 

This study uses publicly available rice leaf disease datasets from Kaggle, as summarized in Table 1. 

The combined dataset contains five classes, which are Bacterial Blight, Blast, Brown Spot, Tungro, and 

Healthy. All the images were carefully reviewed for clarity, correct labeling, and overall quality, while those 

with distortions, overlapping elements, or unclear disease symptoms were removed. Any ambiguous cases 

were manually checked to ensure accuracy.  

 

2.2. Data Preprocessing 

2.2.1. Data Transformation 
Since the images came from different sources, all the images were converted to RGB to preserve color 

information, which is crucial for detecting rice leaf diseases. Color has been shown to play an important role 

in plant disease classification [18]. All images were then resized to 128x128 pixels to standardize the input size 

while keeping key visual details. This resolution strikes a balance between computational efficiency and 

maintaining important features such as color variations and texture [19]. After that, pixel normalization was 

applied by scaling pixel values to the range [0, 1] for stable and faster convergence during training [20]. Finally, 

the five disease classes were converted into numerical labels and then transformed into one-hot vectors using 

the to_categorical() function, allowing the model to compute categorical loss during training [21]. 

 

2.2.2. Dataset Splitting 
 

Table 2. Dataset Distribution After Splitting 

Class Total Images Training (80%) Testing (20%) 

Bacterial Blight 1.584 1.267 317 

Blast 1.440 1.152 288 
Brown Spot 1.600 1.280 320 

Healthy 1.488 1.190 298 
Tungro 1.318 1.055 263 

Total 7.430 5.944 1.486 

 

The dataset was split into 80% for training and 20% for testing, using stratified sampling to maintain 

balanced class distribution. This ensures there is enough data to train the model while reserving sufficient 

samples for a fair evaluation [22]. 

 

2.2.3. Data Augmentation 
 

Table 3. Data Augmentation Parameters 

Reference Augmentation Type Parameter 

[23] Rotation Up to 20% 

[24] 

Widht Shift Up to 20% 

Height Shift Up to 20% 
Zoom Up to 20% 

Horizontal Flip True 

 

Even though the dataset was big enough, there wasn't much visual variety in things like orientation 

and frame. We used the ImageDataGenerator class from Keras to add more data to the training sample. This 

helped the model generalize better and avoid overfitting [25]. 
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To maintain significant color patterns related to disease, such as the yellowish colors in Tungro and 

the brown lesions in Brown Spot [3], color-based augmentation, like hue, saturation, or brightness, was not 

used. This decision was made to avoid changing the original color features that are important for identifying 

diseases [18]. If the color is randomly modified, it could distort the real appearance of the disease and make 

one class look like another. 

By keeping the original colors unchanged, the model can learn the real color and texture patterns of 

each disease, which makes its predictions more reliable and easier to interpret in real-world agricultural use. 

Table 3 shows the chosen parameters for the augmentation. These changes make the data more varied without 

changing important parts of rice leaf diseases. 

 

2.3. Proposed Model Architecture 

 

Figure 2. Architecture of the Proposed CAE-CNN and Modified SE Block with GMP 

The specific function of each component in the model is described as follows. 

 

2.3.1. CNN for Classification 
A Convolutional Neural Network (CNN) is widely used for image classification because it can 

automatically extract spatial features such as edges, texture, and shapes from an input image [26]. A standard 

CNN consists of three main components, which are convolutional layers, pooling layers, and fully connected 

layers that progressively learn hierarchical feature representations [27]. In this study, the CNN is used as the 

classification component that processes the latent vector generated by the encoder. The classifier consists of 

two layers with 128 and 64 neurons, followed by a dropout of 0.3 to prevent overfitting [28]. The output layer 

uses softmax with five neurons corresponding to the five disease classes. The model is trained using the Adam 

optimizer and categorical cross-entropy loss. 

Although previous studies have reported high accuracy in rice disease classification, DenseNet201 

has achieved over 99% accuracy [29], CNN often needs a lot of computing power and can overfit when there 

isn't enough data [8]. By using the high-quality feature representations from the encoder, we hope that this 

approach can achieve a good balance between speed and accuracy while keeping the number of parameters 

low. 
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2.3.2. Convolutional Autoencoder (CAE) 
A CAE is an unsupervised framework with encoder and decoder layers, designed for feature extraction 

while minimizing noise. By using convolutional and pooling operations, CAE maintains spatial integrity and 

produces compact feature representations [30]. They have proven effective in plant image analysis. For 

example, Boukhlifa and Chibani (2024) integrated CAE with a CNN to reduce the number of convolutional 

layers while preserving accuracy in tomato disease classification [10]. 

In this Study, the CAE is employed as the feature extraction module instead of relying solely on a 

standard CNN backbone. This design choice is motivated by the limitations of conventional supervised CNN 

models, which typically require large labeled datasets, are prone to overfitting on imbalanced or limited data, 

and demand high computational resources, as reported in previous studies [8], [9], [27], [31], [32]. Since the 

collected rice leaf images originate from multiple public datasets with varying resolutions, lighting conditions, 

and noise levels, an unsupervised feature extractor is advantageous. CAE learns feature representations through 

reconstruction, enabling it to capture domain-invariant and noise-resistant patterns without depending on class 

labels. Prior studies have shown that CAE can produce compact, robust, and denoised latent features that 

significantly reduce the parameter load of downstream CNN classifiers while retaining discriminative 

information [10], [30], [33]. Therefore, integrating CAE before the CNN classifier provides a more stable and 

efficient representation space, supporting low-resource deployment while maintaining high accuracy. 

The proposed CAE design uses separable convolution as the main operation for both the encoder and 

decoder. The encoder has three convolutional layers because this setup has been demonstrated to work well in 

our previous research [9]. Each layer has 32, 64, or 128 filters with a 3x3 kernel size. After that, an SE-Block 

and MaxPooling2D are used to get important features while lowering the number of dimensions. Instead of 

flattening the collected features, GMP is used to summarize them. After that, the features are transformed into 

a 128-dimensional latent vector. Similar to the encoder, the decoder uses UpSampling2D and Separable 

Convolution not to extract the feature but to reconstruct the original input image. Its main purpose is to help 

the encoder learn more effective feature representations [30]. ReLU is used for the hidden layers to keep the 

pixel values normalized, while sigmoid is used for the output layer. The model is trained with Mean Squared 

Error (MSE) to make sure that the reconstructed features are very similar to the original inputs [10]. Although 

minor details may be lost, CAE is an efficient feature extractor [9] and their performance can be further 

enhanced by integrating SE-Block, GMP, and Separable Convolution. 

 

2.3.3. Integration of SE-Block with Global Max Pooling 
The Squeeze and Excitation Block (SE-Block) is a component within a CNN that adjusts the 

importance of features at the channel level [11]. SE-Block is divided into two steps, which are the squeeze and 

the excitation. The squeeze step applies Global Average Pooling (GAP), while the excitation step uses fully 

connected layers with ReLU and sigmoid activations to highlight informative channels [34]. SE-Blocks have 

shown strong results in plant disease classification, achieving over 99% accuracy when integrated into ResNet-

50 [35]. These findings confirm SE-Block effectiveness in improving accuracy without increasing complexity. 

In this study, SE-Block is built into each Separable Convolution layer to adjust the weights of the 

channels. This research substitutes GMP for the normal GAP. This change is based on the fact that rice leaf 

diseases often show up as small, high-contrast patches. Because of this, GMP is better than GAP at showing 

these kinds of limited patterns [36]. A research by Md. Sazzadul I. Prottasha. et al. (2021) found that GMP was 

more accurate than GAP when it came to classifying plant diseases [37]. The SE-Block with GMP works by 

emphasizing the most important channel properties, processing them over a tiny network, and creating weights 

that boost the most useful channels while lowering the less useful ones. 

 

2.3.4. Separable Convolution 
Separable Convolution is a convolutional method that splits standard convolution into two steps, 

which are depthwise and pointwise operations. In the depthwise step, a separate filter is applied to each input 

channel, followed by a 1x1 pointwise convolution to combine the features. In this study, the model uses 

SeparableConv2D instead of the usual Conv2D. This approach significantly reduces computational cost and 

the number of parameters while maintaining accuracy [13]. For example, a research by Prottasha and Reza 

(2022) applied Separable Convolution in their study and achieved about 95% accuracy in rice leaf disease 

classification, showing that this approach is both efficient and reliable [38]. 

 

2.3.5. Global Max Pooling (GMP) 
In this study, GMP is used instead of Flatten layer at the end of the encoder section. GMP is a pooling 

method that can be used to replace the Flatten layer by selecting the maximum activation from each feature 

map, keeping important information while reducing the number of parameters. Unlike Flatten, which fully 

connects all the neurons and increases the complexity, GMP efficiently compresses the features, and helps 

prevent overfitting [12] and has minimal memory usage, making it well-suited for low-resource systems. Our 
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previous studies also show that GMP can maintain or even improve accuracy in rice leaf disease classification 

while reducing the number of parameters [9]. By using GMP, it will make sure that only the most useful 

characteristics are sent to the dense layer [12]. The result is put into a 128-dimensional latent vector. 

2.4. Model Training 

The training parameters for the proposed CAE-CNN models are summarized in Table 4. 

 
Table 4. Model Training Parameters 

Component CAE (Unsupervised) CNN (Supervised) 

Optimizer Adam Adam 

Loss Function MSE Categorical Crossentropy 

Activation Function ReLU (Hidden Layers), Sigmoid (Decoder) ReLU (Hidden Layers), Softmax (Output Layer) 
Early Stopping Monitor: val_loss, Patience: 10 Monitor: val_loss, Patience: 10 

Epochs 100 100 

Batch Size 64 64 
Input Data Rice Leaf Images (128x128x3) Latent Vectors (128 dimensions) 

 

2.5. Hyperparameter Optimization 

 
Table 5. Hyperparameter Search Space using Optuna 

Parameter Value Options Description 

Target Size 64x64, 128x128 Tests lower and higher input resolutions 

Rotation Range 20, 40, 60 Rotation augmentation for data variability 

Width Shift Range 0.2, 0.4, 0.6 Horizontal displacement simulation 
Height Shift Range 0.2, 0.4, 0.6 Vertical displacement simulation 

Zoom Range 0.2, 0.4, 0.6 Zoom in and zoom out variations 

Filter 1-3 32, 64, 128, 256 Tests different convolution depths 
Reduction 8, 16 Adjusts SE-Block reduction ratios 

Dense 1 64, 128 256 Varies first dense layer capacity 

Dense 2 32, 64, 128 Adjusts the second dense layer size 
Dropout Rate 0.2, 0.3, 0.5 Tests different regularization strengths 

Batch Size 32, 64, 128 Balances training stability and efficiency 

Epoch 50, 100 Compares shorter and longer training durations 

 

To obtain an optimal configuration, this study employed Optuna, an automated hyperparameter 

optimization framework using the Tree structured Parzen Estimator (TPE) algorithm with an integrated pruning 

mechanism to terminate unpromising trials early [39]. The search space included several parameters, as shown 

in Table 5. 

Given the large number of possible combinations, at least 50 trials were conducted, following previous 

studies that reported this range to be sufficient for convergence [40]. The optimized results were compared 

with the proposed model to validate whether the proposed model achieved higher accuracy and maintained 

computational efficiency. In this study, Optuna functioned as a validation and refinement tool rather than a 

replacement for the main design. A Median Pruner was applied to speed up the search by discarding 

underperforming trials, while early stopping monitored validation loss to reduce computation time [41]. The 

primary evaluation metric was validation accuracy, complemented by efficiency measures such as encoder and 

classifier parameter counts. 

 

2.6. Model Evaluation 

2.6.1. Accuracy Metrics 
Model performance was evaluated using Accuracy, Precision, Recall, and F1-Score, calculated per 

class and as macro averages to assess both overall correctness and class. After that, a confusion matrix was 

used to visualize classification errors [42], while accuracy and loss curves tracked learning performance during 

training. 

 

2.6.2. Efficiency Metrics 
Efficiency was assessed through parameter count, model size, and inference latency to estimate 

computational cost and deployment feasibility [43]. Visualization of predictions, including true labels, 

predicted labels, confidence scores, and processing times, supported a clearer interpretation of model behavior. 

This dual evaluation ensured the model achieved both high accuracy and computational efficiency, making it 

suitable for practical applications. 

 

2.7. Ablation Study 

An ablation study was conducted to evaluate the individual contribution of each component [44] 

within the proposed CAE-CNN architecture, including SE-Block, GMP, and Separable Convolution. Variants 

were created by selectively removing or replacing these modules, and all models were tested under the same 
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dataset, preprocessing, training protocol, and CPU-based environment. Differences in classification accuracy 

and computational efficiency, therefore, reflect the impact of each architectural component. The detailed results 

are presented in Table 7, demonstrating how each module contributes to the overall performance and guiding 

the final model design. 

 

2.8. Comparative Study 

In addition to the ablation study, we conducted a comparative analysis with established CNN models 

for rice leaf disease classification. Unlike relying on reported results from different studies, all benchmark 

models were evaluated under the same dataset, preprocessing, training protocol, and CPU-based environment 

to ensure a fair comparison. Each model was implemented to match its original architecture, and differences 

in accuracy, model size, parameter efficiency, and inference speed reflect solely architectural variations. 

Detailed quantitative results are presented in Table 8, highlighting the competitiveness and practical efficiency 

of the proposed model. 

3. RESULTS AND DISCUSSION 

3.1. Proposed Model Evaluation 

3.1.1. Accuracy and Loss Graph 

 

 

Figure 3. Accuracy and Loss Graph 

The training performance of the proposed CAE-CNN model, as illustrated in Figure 3, shows a rapid 

increase in accuracy during the initial 20 epochs, followed by gradual stabilization up to epoch 100, achieving 

98.77% training accuracy and 99.39% validation accuracy. The close alignment of both curves indicates 

excellent generalization and the absence of overfitting. Similarly, with the accuracy graph, the loss curve 

exhibits a steep decline in the early epochs and progressively converges toward near zero values, with training 

loss at 0.0308 and validation loss at 0.0153. These results confirm effective optimization, stable convergence, 

and a balanced learning process between training and validation datasets. 

 

3.1.2. Classification Report 

Table 6. Classification Report 
 Precision Recall F1-Score Support 

Bacterial Blight 0.97 1.00 0.99 317 
Blast 1.00 1.00 1.00 288 

Brown Spot 1.00 0.97 0.99 320 

Healthy 1.00 1.00 1.00 298 
Tungro 1.00 1.00 1.00 263 

     

Accuracy   0.99 1.486 
Macro Avg 0.99 0.99 0.99 1.486 

Weighted Avg 0.99 0.99 0.99 1.486 

 

The classification report in Table 6 shows that the proposed model performs very well and consistently 

across all five classes, reaching an overall accuracy of 99%. The classes like Blast, Healthy, and Tungro 

achieved perfect Precision, Recall, and F1-Score values, meaning the model could clearly distinguish these 

categories without any errors. A class like Bacterial Blight also produced near-perfect results, with a Precision 

of 0.97 and a Recall of 1.00, indicating that all diseased samples were correctly detected, although a few leaves 
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might have been slightly misclassified. For the Brown Spot class, the Recall score of 0.97 suggests a small 

overlap in visual features with other diseases, which occasionally caused minor misclassifications. 

The Macro and Weighted Averages, both at 0.99, confirm that the model maintains strong predictive 

performance and balanced accuracy across all classes, even with different class sizes. Overall, these findings 

demonstrate that the proposed CAE-CNN model effectively captures the unique visual features of each disease, 

providing accurate and reliable classification results for rice leaf disease classification. 

 

3.1.3. Confusion Matrix and Misclassified Samples 

 

(a) 

 

(b) 

Figure 4. (a) Confusion Matrix, (b) Nine Misclassified Samples 

The confusion matrix in Figure 4(a) shows that the proposed model achieved very high precision in 

identifying the five rice leaf disease classes. All classes, like Bacterial Blight, Blast, Healthy, and Tungro, were 

correctly classified with no errors, indicating strong feature learning and consistent performance under the 

evaluated experimental conditions. A small number of misclassifications occurred in the Brown Spot class, 

where nine samples were labeled as Bacterial Blight. This confusion likely happened because of their visual 

similarity, which is that Brown Spot usually shows dark brown circular lesions, while Bacterial Blight produces 

yellowish brown streaks with uneven edges. When the Brown Spot lesions are very small or faint, or when 

lighting conditions cause color distortion, their appearance can resemble the early stage of Bacterial Blight. 

These nine misclassified samples are shown in Figure 4(b). As shown in Figure 4(b), most samples display 

overlapping color tones and lesion textures that could confuse even human observers. The model prediction 

confidence for these samples was moderate, around 68%, indicating that these errors were caused by visual 

ambiguity rather than model design flaws. Even so, the relatively low number of misclassifications 

demonstrates the model’s reliability and its improved ability to distinguish subtle differences between diseases 

based on texture and color features. 

 

3.1.4. Prediction Visualization 
 

 

Figure 5. Prediction Visualization 
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The prediction visualization in Figure 5 illustrates that the proposed model achieved highly confident 

and accurate classifications across all five rice leaf disease classes. Each image displays the true label (T) and 

the predicted label (P), with green text signifying correct predictions. All samples were classified correctly, 

with confidence levels reaching nearly 100%, confirming the model stability and strong discriminative 

capability. The consistent performance across diverse conditions, ranging from clear to slightly varied lighting 

and texture, demonstrates that the model can effectively capture distinct visual patterns such as color intensity, 

lesion shape, and leaf texture. The absence of misclassification in this visualization supports the quantitative 

evaluation results, reinforcing that the model is not only accurate in controlled testing but also reliable for real-

time disease classification. 

 

3.1.5. Parameter Count, Model Size, and Inference Time 

The proposed CAE-CNN model achieved 99.39% accuracy, demonstrating excellent precision in 

classifying rice leaf conditions. The model is compact and efficient, with a total of 85,859 parameters and a 

file size of only 0.28 MB, making it lightweight and suitable for devices with limited memory. Inference time 

is also very fast, at approximately 0.0665 milliseconds per image, corresponding to a throughput of over 15,000 

images per second. This combination of high accuracy, small size, and rapid inference highlights the model's 

effectiveness and practical suitability for real-time field applications in rice disease detection. 

 

3.2. Hyperparameter Optimization Results 

 

 
Figure 6. Scatter Plot Trade-off Visualization Optuna 

From a total of 134 Optuna trials, the optimization process identified Trial 3 as the best-performing 

configuration, achieving a validation accuracy of 89.9%. This configuration used a batch size of 128, 100 

epochs, dense layer units of 256 and 128, a dropout rate of 0.3, three convolutional layers with 64, 128, and 64 

filters, an SE reduction ratio of 16, and an input size of 128×128. Data augmentation included rotation up to 

20°, width shift up to 0.2, height shift up to 0.4, and zoom up to 0.4. The total number of parameters for Trial 

3 was 137,632. 

The scatter plot in Figure 6, illustrates the trade-off between validation accuracy and model 

complexity. Several configurations reached 85 to 88% accuracy, but many required more parameters or 

exhibited unstable training behavior. Trial 3 achieved a good balance, maintaining stable learning with 

reasonable computational cost. 

However, when compared to the proposed CAE–CNN model, which achieved 99.39% validation 

accuracy with only 85,859 parameters, approximately 37% fewer than Trial 3, it is evident that the proposed 

model already provides an excellent balance between accuracy and efficiency. Optuna served as a challenger, 

testing 134 architecture combinations using the TPE method. Despite this extensive search, none of the 

generated models surpassed the proposed model in terms of accuracy or compactness, confirming the strength 

and efficiency of the CAE–CNN design. 
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3.3. Ablation Study 

 
Table 7. Comparison of Accuracy and Model Complexity Across an Ablation Study 

Configuration Accuracy Total Parameters 
Model Size .h5  

(MB)  

Inference Time 

(ms/image) 
FPS 

Proposed Model 99.39% 85,859 0.28 0.0665 15,213.15 
-SE, +GMP, +SC 99.39% 83,651 0.24 0.0707 14,144.61 

+SE, -GMP, +SC 99.06% 4,263,779 16.22 0.0817 12,245.54 

+SE, +GMP, -SC 99.39% 378,248 0.59 0.0687 14,567.88 
-SE, -GMP, +SC 99.33% 4,261,091 16.18 0.0996 10,041.37 

-SE, +GMP, -SC 99.39% 375,560 0.55 0.0763 13,098.58 

+SE, -GMP, -SC 98.86% 4,556,168 16.52 0.0848 11,793.75 
CAE+CNN 99.06% 4,553,480 16.49 0.0755 13,245.08 

CNN 99.26% 4,296,261 16.39 1.5057 664.15 

Proposed Model 
with GAP as the 

Flatten 

99.06% 85,859 0.28 0.0694 14,410.22 

Proposed Model 
(SE-Block with 

GAP) 

98.59% 85,859 0.28 0.0770 12,985.30 

 

Based on Table 7, the ablation study was performed to evaluate how SE-Block, GMP, and SC affect 

model performance and efficiency. The proposed model achieved the best balance, achieving 99.39% accuracy, 

a compact 0.28 MB model size, and the fastest inference at 0.06657 ms/image with 15,213 FPS. Despite having 

the second smallest parameter count, it consistently outperformed larger ablation variants.  

Besides that, removing the SE-Block had minimal impact on accuracy, but slightly reduced the 

inference speed, suggesting that SE contributes moderately to feature refinement while adding negligible 

overhead. On the other hand, removing either GMP or SC resulted in massive increases in parameter count, 

reaching over 4 million parameters and more than 16 MB, with no accuracy benefit. Latency also increased 

significantly, from around 0.0817 to 0.0996 ms/image, confirming that both GMP and SC are essential for 

keeping the model lightweight. In addition, the CAE+CNN baseline achieved strong accuracy but remained 

computationally heavy, while the CNN-only model performed worst in speed, requiring 1.5057 ms/image and 

achieving only 664 FPS, far below the lightweight variants.  

Further experiments like replacing GMP with GAP reveal that while both pooling types maintain 

identical parameter counts, GMP consistently offers higher accuracy and faster inference, reinforcing its 

suitability for capturing localized high contrast features crucial for rice disease identification. Overall, these 

findings confirm that the proposed architectural combination provides the optimal trade-off between 

performance, model compactness, and real-time inference capability. 

 

3.4. Comparative Analysis with Related Works 

 
Table 8. The Models Used as Benchmarks for Comparison Rice Leaf Disease Classification with CNN 

Source Algorithm Accuracy Parameter (M) 
Model Size 

.h5(MB) 

Inference Time 

(ms/image) 
FPS 

[29] DenseNet201 99.39% 18.82 77.46 16.0225 62.41 

[32] 

EfficientNet-B0 21.53% 4.23 18.18 6.0196 166.12 

MobileNetV2 99.26% 2.44 11.18 2.6081 383.42 

ShuffleNetV2 99.06% 1.42 5.35 1.3273 753.42 

[45] 
Customized CNN + Separable 

Convolution 
99.26% 0.15 1.77 0.8585 1,164.84 

[46] dCNN 99.26% 0.24 0.91 0.7895 1,266.62 
[47] ImShuffleNet + SE-Block 96.97% 0.36 1.38 18.322 54.58 

[48] EfficientNet B3 + SE-Block 79.07% 10.7 40.83 7.8927 126.70 

[49] 
LiSA-MobileNetV2+Swish+SE-
Block+Separable Convolution 

98.86% 0.57 2.17 2.6540 376.79 

[9] 
Our Previous Research with 

CAE-CNN & GMP 
99.39% 0.375 0.55 0.0763 13,098.58 

 Proposed Model 99.39% 0.086 0.28 0.0657 15,213.15 

 

Table 8 above compares the proposed CAE–CNN model with representative CNN-based architectures 

for rice leaf disease classification under the same dataset, preprocessing pipeline, and CPU-based 

computational environment. The proposed model achieves a high accuracy of 99.39%, comparable to large-

scale architectures such as DenseNet201, while outperforming several lightweight models, including dCNN 

and ImShuffleNet + SE-Block. These results demonstrate that competitive performance can be achieved 

without relying on deep or heavy parameter networks when feature extraction and channel-wise attention are 

carefully optimized. 
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In terms of efficiency, the proposed model contains only 0.086 M parameters with a compact model 

size of 0.28 MB, achieving the lowest inference latency with only 0.0657 ms/image and the highest throughput 

with 15,213 FPS among all evaluated models. Compared with the author's previous CAE–CNN with GMP 

model (0.375 M parameters, 0.0763 ms/image, 13,098 FPS), the proposed design reduces the parameter count 

by approximately 77%, decreases inference latency by about 14%, and increases throughput by roughly 16%, 

while maintaining the same classification accuracy with 99.39%. These improvements highlight the 

effectiveness of integrating SE-Blocks and Separable Convolution to enhance discriminative feature learning 

and computational efficiency. Overall, the proposed model achieves a well-balanced trade-off between 

accuracy and efficiency, making it highly suitable for real time rice leaf disease detection in resource-

constrained agricultural environments. 

4. CONCLUSION  

This study developed a compact and efficient CAE–CNN model for rice leaf disease classification by 

integrating a CAE with SE-Block, GMP, and Separable Convolution. The experimental results showed that the 

model achieved 99.39% accuracy with only 85,859 parameters and a model size of 0.28 MB, while keeping 

the inference time very low, around 0.0657 ms/image with 15,213 FPS. These findings demonstrate a strong 

balance between accuracy, speed, and efficiency. The ablation study shows that GMP and Separable 

Convolution play a crucial role in keeping the model lightweight and fast. Removing either component led to 

a significant increase in parameter count, model size, and inference time, without providing any improvement 

in accuracy. In contrast, the SE-Block provides only a small improvement in feature representation with 

minimal computational cost. Although the impact of SE-Block on overall accuracy is minor, it slightly 

enhances the model’s ability to focus on important features without adding significant overhead. Moreover, 

when compared with larger networks under identical experimental settings with models such as DenseNet201, 

ImpShuffleNet, and MobileViTV2, the proposed model achieves higher accuracy with far fewer parameters, 

making it ideal for real-time and resource-limited agricultural systems. In addition, compared with our previous 

CAE–CNN with GMP, it reduces parameters by 77%, lowers latency by 14%, and increases throughput by 

16%. 

By addressing the limitations of conventional CNNs, this study demonstrates that careful model 

design can both advance scientific understanding of efficient CNN architectures and provide a practical 

solution for real-time disease monitoring in resource-limited agricultural systems. However, the model's ability 

to generalize is still limited, as cross-validation and testing on diverse external datasets were not performed, 

which may affect performance on unseen data. Moreover, although misclassification between visually similar 

diseases such as Brown Spot and Bacterial Blight was reduced, it was not completely eliminated, indicating 

that fine-grained discrimination under challenging visual conditions remains an open research problem. Future 

work will focus on validating the model on real devices, evaluating its performance under field conditions, and 

integrating it with camera-based systems to enable automated and continuous monitoring in support of 

intelligent and sustainable precision agriculture. 
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