
TIERS Information Technology Journal

Vol.6, No.1, June 2025, pp. 112~128

P-ISSN: 2723-4533 / E-ISSN: 2723-4541

DOI: https://doi.org/10.38043/tiers.v6i1.6839 112

Journal homepage: https://journal.undiknas.ac.id/index.php/tiers

Optimizing Neural Network Weights and Biases Using Particle

Swarm Optimization for Classification Task

Made Agus Dwiputra1, I Gede Pasek Suta Wijaya2, I Gde Wirarama Wedashwara3

agusdwiputram@gmail.com1, gpsutawijaya@unram.ac.id2, wirarama@unram.com3
Master of Information Technology, Universitas Mataram, Nusa Tenggara Barat, Indonesia

ABSTRACT

The current digital era greatly demands reliable automatic classification systems, especially to handle large and
increasingly complex data volumes. One attractive alternative is the Particle Swarm Optimization (PSO) algorithm, which
is recognized for its effective global search. Nevertheless, the performance of PSO for training artificial neural networks
with complex or large-scale data is still uncertain. The primary purpose of this research is to create and assess a
classification engine based on MLP, which uses a PSO algorithm to generate weights and biases. The assessment was
made on three different types of data - dummy data, Iris data, and Sasak script images. For the dummy and Iris datasets,
the model successfully achieved 100% accuracy, demonstrating the effectiveness of the PSO-MLP approach on simpler
data. However, the results differed significantly for the more extensive and complex image dataset, where the model

experienced a drastic decline in performance. In the image classification test with 6 classes, the model with one hidden
layer achieved 71% accuracy, while the model with two hidden layers only reached 56%. For 12-class classification,
accuracy dropped to 35% and 25%, respectively, and for 18 classes, the model achieved only 27% and 7%. These results
indicate that while PSO is effective in optimizing perceptron weights and biases for smaller and simpler datasets, its
ability to handle large-scale image classification with increasing complexity remains limited. Therefore, there is a need
for optimization strategies to enhance the accuracy of optimization for more complex data.

Keywords: Particle Swarm Optimization (PSO); Classification Machine; Weight; Biases; Neural Network

Article Info

Received : 12-02-2025 This is an open-access article under the CC BY-SA license.

Revised : 21-04-2025

Accepted : 30-06-2025

Correspondence Author:

Made Agus Dwiputra

Master of Information Technology,

Universitas Mataram,

Nusa Tenggara Barat, Indonesia.

Email: agusdwiputram@gmail.com

1. INTRODUCTION

The evolution of classification technology, especially in the areas of artificial intelligence and machine

learning, is advancing exceptionally quickly today. The development of classification systems is one of the

core elements of artificial intelligence and machine learning because it is fundamental to the requirements of

pattern recognition, data classification and automating decision making processes. In the pursuit of creating
efficient and precise. The increasing number of studies employing diverse datasets with varying characteristics

has encouraged the exploration of adaptive classification models, as implemented in this research.

One increasingly popular approach involves the use of population-based optimization algorithms. To

build an optimal classification model, experimentation with various types of data is essential. This study begins

with simple data, namely dummy data, which in certain classification cases can produce high accuracy and

serves as an initial step to evaluate the model's workflow and detect potential errors[1]. Subsequently, the Iris

https://issn.brin.go.id/terbit/detail/1589179839
https://issn.brin.go.id/terbit/detail/1589180542
https://doi.org/10.38043/tiers.v6i1.6839
https://journal.undiknas.ac.id/index.php/tiers
mailto:agusdwiputram@gmail.com
mailto:gpsutawijaya@unram.ac.id
mailto:wirarama@unram.com
https://creativecommons.org/licenses/by-sa/4.0/

TIERS Information Technology Journal 113

Optimizing Neural Network Weights …(Made Agus Dwiputra)

dataset is utilized, consisting of 150 flower samples classified into three categories: Iris setosa, Iris versicolor,

and Iris virginica, based on the length and width of petals and sepals[2].

The third dataset consists of images of Sasak script characters Feature extraction in this context is

performed using the Discrete Cosine Transform (DCT). This approach is effective in minimizing redundancy

while emphasizing the most significant features. DCT has been shown to enhance classification performance

by emphasizing relevant frequency information in images[3]. After feature extraction, classification is
performed using a Multilayer Perceptron (MLP) with a feedforward architecture, which has the ability to model

matrix multiplication between inputs and weights, and applies activation functions to map values into non-

linear forms. We look at how important CNN methods are changing the way medical images are sorted.

Researchers are making things more accurate and efficient by concentrating on data preprocessing, transfer

learning, new architectures, and explainability. These models are already helping doctors figure out what's

wrong with people who have lung and skin problems, diabetic retinopathy, brain tumors, bleeding, leukemia,

and breast cancer[4].

To tackle the optimization challenge at hand, we will employ the Particle Swarm Optimization (PSO)

algorithm. PSO is a sophisticated, population-based optimization technique that draws inspiration from the

collective behaviors exhibited by certain organisms, such as birds and fish, in their pursuit of resources.[5].

PSO offers the advantage of exploring the solution space globally, thus avoiding local minima traps, and

accelerating convergence, making it particularly suitable for optimizing the weights and biases of neural
networks.[6]. As highlighted addressing preprocessing challenges particularly in cloud-prone regions like

Indonesia through morphological operations significantly enhances the accuracy of classification models that

rely on multispectral image inputs[7].

A number of previous studies have shown the effectiveness of Particle Swarm Optimization (PSO) in

improving the accuracy and efficiency of classification systems. For example, in the classification of Chronic

Kidney Disease (CKD), the combination of PSO with SVM and AdaBoost achieved an accuracy of up to

99.50% [6]. In brain tumor classification, PSO was applied during the segmentation stage and combined with

transfer learning-based CNNs (e.g., AlexNet and Inception-V3), achieving up to 99.0% accuracy on the

BRATS-2017 and BRATS-2018 datasets [5]. Other studies look at how to make coral reef image classification

better by using Particle Swarm Optimization (PSO) for feature selection, Histogram of Oriented Gradients

(HOG) for feature extraction, and Support Vector Machine (SVM) for classification. The research examined
datasets of healthy, bleached, and deceased corals, categorized into training, validation, and test sets. This

method greatly improved the accuracy of classification, going from 79.11% with the original SVM model to

85.44% with the PSO-optimized SVM[8].

However, several studies using the PSO algorithm do not always show good results. For instance, in

text data classification tasks such as SMS spam and sentiment analysis, the best accuracy was achieved without

PSO 98% for SMS spam and 84.03% for sentiment analysis while with PSO, the accuracy dropped to 65.26%

and 71.23%, respectively [4]. In a meta-analysis it was found that although genetic algorithms increased the

average output of neural networks by 3.44%, the effect was not statistically significant, highlighting the

importance of careful algorithmic tuning in neural network optimization strategies[9].

Particle Swarm Optimization (PSO) is now the most accepted meta-heuristic optimization algorithm

to use for neural networks and is particularly predominant when exploring. Recently, PSO has shown great
success in augmenting performance of neural networks by exploring hyperparameters and alternatives to neural

network architectures. For instance, [10] proposed a multi-level PSO for optimizing Convolutional Neural

Networks (CNN), which resulted in improved classification accuracy on complex image datasets[10].

Similarly,[11] introduced CPSO-Net, a continuous PSO-based deep learning framework for hyperspectral

image classification, achieving competitive performance compared to traditional optimization methods[11]. In

addition, PSO variants have been explored for CNN optimization without velocity equations, providing

efficient solutions for image classification with reduced computational costs[12]. Other approaches combine

PSO with extreme learning machines (ELM) for hyperspectral image analysis, further confirming the

adaptability of PSO in handling high-dimensional data[13]. More recently, multi-objective metaheuristic

approaches including PSO have been investigated to optimize CNNs for balancing accuracy and complexity,

indicating the potential of PSO in developing scalable and generalized classification models[14]. A recent

study similarly emphasized the role of optimization techniques like genetic algorithms in refining network
configurations, showing improved RMSE values when applied to time-series forecasting models such as

RNNs. This knowledge makes it even more clear how important hyperparameters are for optimizing sets, which

can be very different for different datasets and classification problems[15].

Research has demonstrated that the Particle Swarm Optimization (PSO) algorithm performs

effectively with straightforward datasets, including numerical data and established datasets such as the Iris

dataset. However, its efficacy tends to diminish when applied to more intricate datasets, particularly those

involving image data with a high number of classes. This research is an extension of the author's previous

study[16], in which Particle Swarm Optimization (PSO) was used to optimize a Multilayer Perceptron (MLP)

114 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

model without hidden layers, and comparisons were made with CNN and SVM methods on simple datasets

such as Iris and dummy data. The study demonstrated that PSO was effective for classifying simple data but

did not explore the impact of varying network architectures or its application to more complex image data.

Therefore, this current study presents a further development by introducing one and two hidden layers into the

MLP architecture and testing the model on the Sasak script image dataset. The aim is to evaluate the limitations

of PSO in optimizing neural networks for the classification of more complex and multiclass datasets. This

occurred because the network architecture used had not been further explored, so the potential of PSO in

addressing multi-class image classification problems had not been fully optimized. In addition, research that

specifically develops a classification machine for Sasak script images using PSO as the main optimization

method is still very limited, thus this study carries a novelty value and can contribute to the development of
classification methods for traditional image data with high complexity.

As a powerful non-derivative optimization algorithm, Particle Swarm Optimization (PSO) is

particularly effective for addressing non-linear and complex optimization challenges. In light of these

advantages, this study utilizes PSO to enhance the training of a classification model based on an advanced

Multilayer Perceptron (MLP) architecture. The experimental scope is systematically expanded by evaluating

the model’s performance across varying class configurations specifically 6, 12, and 18 classes to explore the

limitations of PSO-based classification when applied to datasets of increasing complexity, and to assess the

adaptability and generalizability of the PSO approach across different data characteristics. Building upon the

previous research, this study is designed to reflect its primary objective to develop and evaluate a classification

machine based on a Multilayer Perceptron (MLP) optimized using Particle Swarm Optimization (PSO), while

also identifying the limitations and potential improvements of this approach when applied to complex datasets.

2. RESEARCH METHOD

The research methodology in this study is designed to classify image data using a neural network

model optimized by Particle Swarm Optimization (PSO). The overall workflow includes several main stages,

starting with data collection, followed by preprocessing, and continuing to feature extraction utilizing the

Discrete Cosine Transform (DCT). The extracted features are then selected and passed through a feedforward

process to the neural network structure.

This model uses a Multi-Layer Particle Swarm Optimization (ML-PSO) architecture. The training

process begins with initialization of particle positions and velocities, followed by iterative updates based on

fitness evaluation. During this process, input data is effectively propagated through one or more hidden layers.

Training ends after reaching a predetermined maximum number of iterations or after reaching a specified error

threshold. Model performance is then assessed using standard classification metrics, including accuracy,

precision, recall, and F1 score.
The process is comprehensively illustrated in Figure 1, which details the step-by-step workflow of the

proposed classification approach that integrates neural networks with Particle Swarm Optimization (PSO).

TIERS Information Technology Journal 115

Optimizing Neural Network Weights …(Made Agus Dwiputra)

Figure 1. Flow Classification Machine Model

2.1. Dataset

This Reaserch use three different datasets to evaluate the generelization capability of the proposed

classification model:

1. Dummy Data

 Manually generated data with simple numeric patterns, useful for baseline evaluation and model

debugging that can be seen in the Figure 2.

Figure 2. Dummy Dataset

2. Iris Dataset

 The Iris dataset employed in this study is based on previous research comparing the classification

performance of the K-Nearest Neighbor and Random Forest algorithms. The dataset includes 150 flower

samples, each sample described with four traits: sepal length, sepal width, petal length, and petal width.

These flower samples are usually categorized into three different species of flower: Iris setosa, Iris

versicolor, and Iris virginica—as established in prior studies[17]. The image of those samples can be seen

in the Figure 3.

116 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

Figure 3. Iris Dataset

3. Sasak Script Image Dataset

 The image dataset of Sasak script utilized in this study originates from previous research involving

the implementation of Convolutional Neural Networks (CNN) for character recognition on Android

platforms, which reported a high classification accuracy of 99.31%[18]. The dataset is organized

systematically into three subsets; the first subset contains 18 classes, the second subset contains 12 classes,

and the third subset contains 6 classes. Each class contains 600 handwritten character samples. Participants

in the data collection represented a variety of educational backgrounds, including elementary school
students, junior high school students, senior high school students, and university students. Participants

were instructed to write Sasak characters on A4-sized paper that was formatted with a 4x4 cm grid, so that

the placement of the characters was consistent. All character samples were digitized and saved in PNG file

format and were saved at a resolution of 128 × 128 pixels. Examples of images of each Sasak script image

can be seen in the Figure

Figure 4. Sasak Scrip Image Dataset

2.2. Labeling

In the labeling stage, each of the three datasets used a different labeling approach. The dataset used in

this analysis contained three columns as input variables, plus another variable column that indicated the dataset

as a form of identifier. The Iris dataset includes measurements of sepal length, sepal width, petal length, petal

width, and species of the iris. Specifically, the species, which were Setosa, Versicolor, and Virginica, have

been formatted as numerical labels, specifically 0, 1, and 2. The conversion of the categorical labels into

numerical labels allows the model to effectively optimize the weights and biases based on differences between

classes.

In this study, the labeling process for the Sasak character dataset was conducted by assigning a unique

numerical identifier to each class of character images during the dataset loading phase. As we loaded the images
from the folder, we determined the class labels based on the folder names. Each subfolder represented a specific

character class. Each image was then associated with an integer label corresponding to its respective class. The

labels were subsequently converted into a one-hot encoded format utilizing the to_categorical() function from

the Keras library. This transformation is crucial for multi-class classification tasks, as it effectively converts

integer class labels into binary matrices that represent class membership. For example, an image belonging to

class 3 out of 6 total classes would be represented as a binary vector [0, 0, 0, 1, 0, 0]. This one-hot encoded

label matrix was then used as the target output (y) during the training and evaluation of the classification model.

TIERS Information Technology Journal 117

Optimizing Neural Network Weights …(Made Agus Dwiputra)

2.3. Preprocessing

The preprocessing stages applied to each dataset in this study depend on the characteristics of the data

used. For the dummy dataset, preprocessing was minimal. The data were directly initialized as NumPy arrays

and split into features and labels without further normalization or standardization in contrast, the Iris dataset

has undergone a series of preprocessing steps, which included the separation of features from labels, the

conversion of categorical labels into a numerical format, and the division of the dataset into training and testing

sets.

Figure 5. Preprocessing Flow

Meanwhile, in Figure 5 for the Sasak character image dataset, the preprocessing process begins with

the original Sasak script image, which is first converted to grayscale to simplify color information and reduce

computational complexity. The grayscale image undergoes resizing to a standardized dimension, specifically

128×128 pixels, to maintain consistent input sizes for the model. Subsequently, feature extraction is conducted

utilizing the Discrete Cosine Transform (DCT), which effectively converts the image from the spatial domain

to the frequency domain. This transformation highlights critical features while minimizing redundancy. The
outcome of the DCT is a matrix of frequency coefficients that can be further refined, for instance, through the

application of a Zigzag scanning technique, to produce a compact and representative feature vector. This

feature vector then serves as the input for the neural network-based classification model.

2.4. Extraction Fature DCT

Feature extraction utilizing the Discrete Cosine Transform (DCT) is a prominent technique in the field

of image processing, particularly in the context of classification tasks. The DCT serves to convert spatial image

data into the frequency domain, enabling the capture of essential patterns and textures. This transformation

effectively concentrates the image's energy within a limited number of low-frequency components. As a result,

it facilitates dimensionality reduction while preserving vital information, thereby enhancing both the efficiency

and accuracy of classification models[19].

Recent studies have demonstrated the efficacy of DCT in various applications. For instance, in the

classification of brain tumors using MRI images, DCT-based feature extraction combined with machine

learning models like Support Vector Machines (SVM) achieved high classification accuracy, underscoring
DCT's capability to capture discriminative features in medical imaging. Similarly, in the assessment of tobacco

leaf quality, DCT was utilized to extract texture features, leading to a classification accuracy of 90%, which

highlights its effectiveness in agricultural product evaluation[20][21]. In the context of the provided code, DCT

is employed to extract features from grayscale images of Sasak characters. Each image is first converted to

grayscale to ensure uniformity in pixel intensity values. The Discrete Cosine Transform (DCT) is employed to

convert the image into the frequency domain. To effectively manage the dimensionality of the resulting data,

a ZigZag scanning pattern is utilized to select a subset of the most significant DCT coefficients. This method

allows for the extraction of the most informative features from the image. These features are subsequently used

as inputs for training a neural network model, which is optimized through Particle Swarm Optimization (PSO).

This integrated approach harnesses the strengths of DCT in feature extraction and PSO in optimization, leading

to high classification accuracy in the Sasak character recognition task.

2.5. Select Feature

In this process, which takes place after feature extraction using the Discrete Cosine Transform (DCT),

only the most significant coefficients from the transformed matrix are retained to construct a compact and
informative feature vector. The selection process is essential for minimizing the dimensionality of the input

data, which in turn reduces computational complexity. This approach effectively preserves the key

characteristics of the images that are necessary for accurate classification.

In the context of this study, 64 DCT coefficients were selected from each image to serve as the feature

representation. This decision was based on an effort to capture more discriminative information compared to a

previous experiment that utilized only 32 features[16]. The increase in the number of features was designed to

enhance the model’s capability to differentiate between classes by offering a more comprehensive set of

118 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

descriptors for each input. The effects of this modification were further assessed during the model testing phase

to evaluate any improvements in classification performance. This process is vital for reducing computational

complexity while maintaining essential information from the image. The selected features are subsequently

passed to the feedforward stage of the neural network.

2.6. Feed Forward

The feedforward process is the basic computational operation of the Multilayer Perceptron (MLP)

model where input features pass through several layers of neurons. Each neuron in the network computes the

weighted sum of its inputs, along with a bias term and applies a nonlinear activation function, generally

'Rectified Linear Unit' (ReLU), to produce its output. This process will allow the network to learn complex,

nonlinear relationships in the data, which is crucial to obtain high accuracy levels when classifying images.
In this study, the feedforward computation is pair with the Particle Swarm Optimization (PSO)

algorithm for the purpose of optimizing the weights and biases of the network and to supplant traditional

gradient-based optimization methods, like backpropagation. The Particle Swarm Optimization (PSO) has very

powerful benefits including improved global search abilities and more robust against local minima, which

improves the performance of training a neural network.

A primary focus of this study is yet to explore depth of network architectures, and specifically how

many hidden layers would be needed to improve their classification performance. For the past few studies, the

classification model was fit without hidden layers, using only direct connections between inputs and outputs.

While this avoided fitting a complex network with hidden layers, it also restricted the network's ability to

consider higher level abstractions of the data[16].

To address this limitation, the present study presents and compares two architectural configurations
one with a single hidden layer and another with two hidden layers. The goal is to determine how increased

depth in combination with PSO (Particle Swarm Optimisation) will improve the ability of the ANN (Artificial

Neural Network) to generalise and classify the image data accurately.

Findings from our experiments indicate that the model was able to capture complex relationships more

effectively with additional hidden layers. However, the presence of more than one hidden layer did not always

improve model performance. In some cases, excessive depth, especially with high-dimensional image data,

increased the amount of complexity and can result in overfitting or slow down convergence. These findings

reinforce the importance of tuning architecture for neural networks, even with state-of-the-art optimization

interventions like Particle Swarm Optimization (PSO).

2.7. ML-PSO Architecture

In this study, the classification engine was designed using three different datasets as inputs. Once the

eventuality of pre-processing was reached, the data was processed through a feedforward structure in an ANN

(artificial neural network). The structure calculated the dot product of the input matrix and the weights,
followed by the use of the Rectified Linear Unit (ReLU) activation function. The ReLU activation function

allows negative values to become zeros and positive values to remain, allowing the model to learn non-linear

relationships in the data, providing relative representational power. The neural network had two hidden layers,

which provided additional representational power but also increased the model's generalization ability when

solving complex tasks, what are mostly classification tasks [22].

This study used the Particle Swarm Optimization (PSO) algorithm to optimize the model parameters,

including the weights and biases. PSO is a population-based optimization method, inspired by the behaviors of

natural systems, such as birds flocking or fish schooling and is suitable for optimizing complex real-life

problems. In a PSO approach, each particle in the swarm represents a potential solution and moves in space

based on both their own best position (local best), and the best position of the swarm (global best). The velocity

and position of each particle are updated using the following equations:

𝑣it+1 = w . vti + c1 . r1 . (pbest - xti) + c2 . r2 . (pbest - xti)
𝑥it+1 = 𝑥it + 𝑣it+1

where w is the inertia weight, c1 and c2 are cognitive and social learning factors respectively, and r1

and r2 are random values between 0 and 1. This process continues until a maximum number of iterations is

reached, or convergence occurs, with the final solution based on the global best position (gbest) which defines
the best set of weights and biases for the classification model. In this work, the PSO algorithm was employed

to optimize weights and biases of an MLP architecture.

The PSO parameters were chosen as follows: A population size of 500, a max iteration value of 1500,

an initial inertia weight (w) of 0.7 with a damping factor (wdamp) of 0.99, and both learning coefficients,

personal and social, (c1 and c2) were set to 1.5. The parameter values were chosen based on a variety of

(1)

TIERS Information Technology Journal 119

Optimizing Neural Network Weights …(Made Agus Dwiputra)

previous works and initial trials, which showed stability during the convergence process. The selected values

of w = 0.7 and wdamp = 0.99 were intended to maintain a balance between exploration and exploitation, while

c1 and c2 = 1.5 provided a balanced contribution between individual and collective experience.

To further adapt the algorithm to the increased dataset size and complexity, especially in the

classification of Sasak script images, parameter ranges were adjusted. Specifically, the population size (nPop)

was varied between 500 and 1500, and it tended to increase proportionally with the number of hidden layers
and dataset complexity. Likewise, the maximum number of iterations was extended up to 2000 to allow

sufficient convergence in more complex scenarios. By contrast, for simpler datasets such as Iris and dummy

data, the default parameters adopted from previous studies [11] were retained, since they already yielded stable

and optimal results.

The parameters of PSO, population size (nPop), inertia weight (w), inertia damping ratio (wDamp),

and the learning coefficients (c1 and c2) were optimized based on the features of each dataset. The population

size (nPop) specifies how many particles are traveling through the search space. The inertia weight (w) controls

how much a particle’s past velocity affects its movement, while the damping factor (wDamp) gradually reduces

this influence to help the swarm focus on better solutions over time. The learning coefficients (c1 and c2)

balance the influence of individual experience and the collective knowledge of the swarm, ensuring stable and

reliable optimization. Larger datasets required more particles and iterations to explore a wider search space

and ensure adequate exploration, whereas smaller datasets had lower dimensionality and required fewer
particles to achieve optimal results more efficiently.

The hybrid approach of merging PSO and neural networks has been successful in many different

classification applications. For example, developed a PSO based method to optimize neural network structure

for image classification. These results produced comparable accuracies with significantly reduced

computational costs than traditional methods [23].

2.8. Hidden Layer

The architecture includes one or more hidden layers, which are represented as consecutive Layer

blocks in the diagram.These layers provide the MLP with the capability to represent the input data in

increasingly abstract forms. In the context of this study, experiments were conducted using both a single hidden

layer and a two-layer configuration to investigate how network depth impacts classification accuracy when

combined with PSO-based optimization. Surprisingly, adding hidden layers did not always improve

performance. This was particularly evident in experimenting with complex image data. This speaks to the
importance of getting the architecture right when using PSO.

2.9. Termination Condition

In this study, the stopping criteria for the ML-PSO model are determined by two parameters: the

maximum number of iterations (maxIt) and the minimum error threshold (maxError). The optimization process

will terminate when either of these conditions is met. The maxIt parameter is implemented to ensure that the

optimization does not continue indefinitely, which is especially relevant when working with complex datasets,

such as Sasak script images that comprise 3,600 samples and 6 classes. In these cases, the reduction in error

can be gradual, making convergence difficult to achieve within a limited number of iterations.

2.10. Testing

The MLP-PSO model was validated as part of the testing stage against a test dataset (x_test, y_test)

that had not be utilized during training as test datasets allow for analysis of the model's ability to generalize

findings to unseen instances. Therefore, the optimum weights and biases obtained in training were applied to

the test inputs, along with predictions made using the forward propagation function. The model's performance

was subsequently assessed through standard classification metrics, including accuracy, precision, recall, and

F1-score, all derived from the confusion matrix. These metrics provide a comprehensive evaluation of the

model’s effectiveness under different class distributions and complexities. Furthermore, this evaluation

highlights the performance gap between simple datasets (dummy and Iris) and the more complex multiclass
dataset (Sasak script), thereby supporting the hypotheses regarding dataset complexity and classification

challenges.

2.11. Training

The classification model training integrates a feedforward artificial neural network (ANN)

architecture optimized by Particle Swarm Optimization (PSO). After data preprocessing, the input passes

through the network layers, where each neuron calculates the weighted sum of inputs followed by the Rectified

Linear Unit (ReLU) activation function to introduce non-linearity. Instead of traditional gradient-based

120 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

optimization, PSO a population-based metaheuristic inspired by social behavior is employed to optimize the

network’s weights and biases.

In particle swarm optimisation (PSO), multiple candidate solutions (particles) concurrently search the

solution space based on their own best experience (local best), and the best experience of the swarm (global

best). Each particle's fitness will continuously be assessed using a chosen loss/error function at every iteration.

Each particle updates its velocity and position based on the movement rules for PSO which gives a good

balance of exploration and exploitation during the search process. This iterative process continues through to

some form of convergence, such as a maximum number of iterations or error level.

The use of multiple hidden layers in the ANN enhances the ability to model complex data patterns

and improves classification accuracy. Combining ANN with PSO allows effective training by circumventing
local minima issues commonly faced in gradient descent, leading to improved convergence and robustness

across various datasets.

This hybrid training approach has demonstrated effectiveness in recent studies optimizing neural

networks with swarm intelligence algorithms, achieving significant improvements in classification tasks

[24][25].

2.12. Evaluation

The evaluation of the system occurs at this stage to confirm it operates correctly and achieves the

intended goals. The evaluation also identifies potential shortfalls and enhancement opportunities for the system.

Evaluation methodology is based upon the confusion matrix, which allows for the analysis of the classification

performance. The performance of the model is evaluated utilizing standard performance metrics: accuracy

(Equation 1), recall (Equation 2), and precision (Equation 3). All metrics are established for a number of pre-

defined test cases to provide a comprehensive evaluation of the model's predictive potential.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correctly classified data points

Total number of data points

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
Number of correctly data points in a specific class

Total number of predicted data points for that class

𝑅𝑒𝑐𝑎𝑙𝑙 =
Number pf correctly classified data points in a specific class

Total number of actual data points in that class

3. RESULTS AND DISCUSSION

Implementing various scenarios was essential to determine the effectiveness of the classification

model in this research study. This research used three separate datasets, and for the Sasak character image

dataset, additional testing scenarios were needed as follows.

3.1 Testing on Dummy Dataset

The testing results of the classification engine model, built using an artificial neural network with two

hidden layers and optimized by Particle Swarm Optimization (PSO), showed highly satisfactory outcomes, as

presented in the following Table 1 and graph illustrates how the error decrease as the number of iterations

increase in the following Figure 6.
Table 1. Classification Report Dummy Dataset

Model

Optimization

Precision Recall F1-

Score

Accuracy

ML-PSO 100% 100% 100% 100%

CNN 11% 33% 17% 33%

SVM 83% 67% 67% 67%

(2)

(3)

(4)

TIERS Information Technology Journal 121

Optimizing Neural Network Weights …(Made Agus Dwiputra)

Figure 6. Test Result Graph on Dummy Dataset

The results for the dummy dataset indicate a rapid convergence, with the error showing a sharp

decrease starting from the second iteration. This early drop in error demonstrates that the PSO algorithm is

highly effective in optimizing the MLP weights and biases when applied to simple, linearly separable data. The

simplicity of the dummy dataset allows PSO to quickly reach near-optimal solutions with minimal iteration,

avoiding the need for extensive search across the solution space. the experimental results indicate that MLP

optimized with PSO achieved the highest accuracy at 100%, confirming its effectiveness in learning from

small, structured datasets through global weight optimization. This outstanding performance demonstrates the

capability of the MLP+PSO hybrid model to identify patterns accurately and generalize well, even when trained

on a limited number of samples. The use of PSO as a global optimizer allows the model to explore the weight

space more effectively than traditional gradient-based methods, thereby avoiding local minima and improving
convergence stability. Moreover, the MLP's architectural configuration, which incorporated hidden layers,

significantly contributed to its ability to recognize nonlinear relationships within the data, thereby boosting its

classification performance in this experimental context.

The SVM model followed with an accuracy of 67%, demonstrating its well-known strength in

handling low-dimensional and linearly separable data. While SVM can adequately handle situations with a

small number of features, its performance was not optimal in this instance due to its sensitivity to the

distribution of features and the choice of kernel. Unlike MLP+PSO, SVM lacks the capacity to internally adapt

its feature representations, which limits its flexibility when modeling more complex or nonlinear patterns, even

in simple datasets.

In contrast, CNNs were not effective, obtaining a performance of only 33%, which can be associated

with the relatively small size of the dataset and the lack of spatial structure in the dataset, both of which inhibit
the generally well-functioning nature of CNNs. CNNs are constructed to process data with spatial hierarchies,

like images which have specific pixel relationships and local patterns. In the absence of spatial dependencies,

CNN architectures have a much harder time being able to learn meaningful features, which makes the use of

convolutional layers not functional.

The results confirm that MLP combined with PSO is a very efficient classification method for simple,

low-sample, non-image datasets. The ability to achieve perfect accuracy with such datasets is impressive and

highlights the importance of matching model architecture and optimization strategies to the dataset

characteristics. While traditional models like SVM can also generate acceptable results, the limitations of SVM

in handling nonlinearity and accommodations of flexibility become apparent when compared to the

combinations of neural networks training methods enhanced by PSO. Meanwhile, convolutional models such

as CNNs require more appropriate data types to fully leverage their representational power, and therefore are

not suitable for the type of dataset used in this experiment.

3.2 Testing on Iris Dataset

An experiment was conducted to develop a classification model using the Iris dataset by implementing

a neural network architecture with two hidden layers. The network was composed of 4 input neurons, 8 neurons

in the first hidden layer, 16 neurons in the second hidden layer, and 3 output neurons that represented the three

classes of Iris flowers. ReLU activation functions were used in the hidden layers, and a softmax function in the

output layer to produce class probabilities. The model's training was performed using the Particle Swarm

Optimization (PSO) algorithm which optimized all weights and biases in the network. The results of the

iteration to achieve the cost function value in this experiment can be seen in Figure 7.

122 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

Table 2. Classification Report Iris Dataset

Figure 7. Test Result Graph on Iris Dataset

All three models CNN, SVM, and MLP optimized with PSO achieved the same accuracy of 98% on
the Iris dataset that can be seen in the Table 2. The convergence plot for the Iris dataset reveals that the error

value begins to decrease more consistently after approximately 400 iterations. This suggests that the PSO

algorithm required an initial exploration phase before gradually refining the weights and biases toward an

optimal solution. The relatively simple and structured nature of the Iris dataset likely contributed to the

successful convergence, highlighting the suitability of PSO for handling low-dimensional and linearly

separable classification tasks. This result indicates that the dataset, characterized by its well-organized and

linearly separable feature space, is relatively straightforward and can be effectively classified using both

traditional machine learning algorithms and more advanced neural network architectures.

The SVM model proved to be effective and efficient in dealing with tabular data that exhibited clear

class separation, providing a lightweight and rapid training process. Although CNNs are primarily designed

for spatial data like images, they adapted well to the reshaped tabular input, likely because of the dataset's low
dimensionality and structured characteristics.

The MLP-PSO model, on the other hand, proved that swarm-based optimization techniques can

successfully train neural networks without relying on gradient-based methods like backpropagation. Even

though the resulting accuracy was the same, the MLP-PSO approach exhibited advantages in terms of

robustness and global search capability, which may be particularly beneficial for more complex datasets or

scenarios prone to local minima.

This result confirms that the classification machine developed using PSO is not only capable of

matching the performance of traditional and deep learning methods on simple datasets, but also offers

flexibility and potential scalability to handle more challenging classification tasks. In terms of computational

complexity, SVM remains the most efficient choice for this specific case, but MLP-PSO presents a compelling

alternative where gradient-free optimization or architectural flexibility is needed.

3.3 Testing on SasakChar Image Dataset

To evaluate the performance of the proposed classification model, a series of experiments were
conducted using the Sasak script image dataset under various testing scenarios. These scenarios encompassed

variations in the number of classes, specifically 6, 12, and 18 classes, with each class containing 600 images.

Additionally, the architecture of the neural network was changed by implementing both 1 and 2 hidden layers

to evaluate how model complexity affects classification performance. The results from each experimental setup

are displayed in a tabular format, including evaluation metrics such as accuracy, precision, recall, and F1-score.

These findings aim to provide a thorough overview of the model's capacity to identify patterns in Sasak script

image data across different complexity levels.

Model

Optimization

Precision Recall F1-Score

ML-PSO 98% 98% 98%

CNN 98% 98% 98%

SVM 98% 98% 98%

TIERS Information Technology Journal 123

Optimizing Neural Network Weights …(Made Agus Dwiputra)

3.1.1 Testing With One Hidden Layer

The evaluation was conducted using several scenarios on the model by employing a single hidden

layer with different class configurations: 6, 12, and 18 classes. This testing aimed to observe the performance

of the classification model across varying numbers of image dataset classes using a single hidden layer. The
results of the classification report in this experiment can be seen in Table 3.

Table 3. Classification Report SasakChar Dataset One Hidden Layer

Figure 8. Test Result Graph on SasakChar Dataset with 1 Hidden Layer

In Figure 8, The convergence plots for the Sasak script image dataset, tested across 6, 12, and 18-class

configurations, show that the error values did not reach zero in any scenario. However, every experiment had

a consistent pattern that demonstrated a decreasing trend of error with additional iterations. This suggests that

even though the PSO algorithm was able to progressively decrease error, it still struggled with completely

optimizing the model with respect to high-dimensional image data. The average number of iterations until

convergence in these experiments ranged from 1400 to 2000. The experiments were initially conducted with

an artificial neural network model with one hidden layer. The evaluation was conducted across three different

scenarios focused on image classification tasks with varying class counts of 6, 12, and 18, with each class

comprising 600 images. The findings indicated that an increase in the number of classes notably decreased

classification accuracy.

Figure 9. Confusion Matrix on SasakChar Dataset with 1 Hidden Layer

From the confusion matrix in Figure 9 the 6-class scenario, the model achieved an accuracy of 71%,

indicating that DCT-based feature representation was relatively effective for simpler classification tasks.

However, when the number of classes was increased to 12, the accuracy dropped significantly to 35%, and

further decreased to 27% for the 18-class scenario. This decline suggests that the single hidden layer

Class Precision Recall F1-

Score

Accuracy

6 71% 71% 70% 71%

12 25% 36% 26% 35%

18 22% 28% 21% 27%

124 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

architecture has limited capability in distinguishing features when dealing with more complex, multi-class

datasets.

These findings indicate that a network with a single hidden layer can be ineffective for classification

tasks with a large number of classes. Typically, as the number of classes and the amount of data increases, the

overall model performance decreases as seen in the lower precision scores, recall scores, F1-scores, and overall

accuracy. This suggests that the representational capacity of a single hidden layer is less capable of capturing

the complex patterns required for accurate multi-class classification. Therefore, to further examine the model’s

performance under these more challenging conditions, the next phase of experiments employed a neural

network architecture with two hidden layers, aiming to determine whether deeper networks can enhance

classification accuracy and provide better generalization for larger and more complex datasets.

3.2.1 Testing With Two Hidden Layer

The evaluation was conducted using several scenarios on the model by employing two hidden layer with

different class configurations: 6, 12, and 18 classes. This testing aimed to observe the performance of the

classification model across varying numbers of image dataset classes using two hidden layer. The results of

the classification report in this experiment can be seen in Table 4.

Table 4. Classification Report SasakChar Dataset Two Hidden Layer

Figure 9. Test Result Graph on SasakChar Dataset with 2 Hidden Layer

In Figure 9, you can see the best cost results obtained for each class tested and each class was tested

with a different number of iterations to obtain optimal results in the test. The Mean Squared Error (MSE),

defined as the average squared difference between the target values and the PSO outputs, consistently decreased

until the iteration limit of 1500 to 2000 was reached in the different class trials. In the subsequent experiment,

the neural network architecture was enhanced by adding a second hidden layer, with the goal of improving
classification performance in more complex scenarios. The same three class configurations were used 6, 12,

and 18 classes with each class containing 600 images, consistent with the earlier setup.

Figure 10. Confusion Matrix on SasakChar Dataset with 2 Hidden Layer

Class Precision Recall F1-

Score

Accuracy

6 48% 56% 51% 56%

12 14% 26% 15% 25%

18 8% 7% 4% 7%

TIERS Information Technology Journal 125

Optimizing Neural Network Weights …(Made Agus Dwiputra)

Surprisingly, the results with two hidden layers showed lower accuracy across all scenarios compared

to the single hidden layer configuration. For the 6-class model accuracy was 56% which is 15% worse than the

previous model. In the same vein, the 12-class and 18-class model accuracies were 25% and 7% respectively

both underperforming the single layered model. There are multiple factors that can be inferred from the

confusion matrices that explain this change in effectiveness. Firstly, having added multiple hidden layers
increased the model complexity and if it isn't a one to one classification, one can assume that overfitting

occurred for certain classes and did not generalize well to new data. Second, the optimization process using

PSO became more challenging in a higher-dimensional search space, making it harder to converge toward

optimal weight and bias values. Thirdly, the confusion matrices indicate that misclassifications were mixed

across a wide breadth of classes; this suggests that the deeper architecture had difficulty extracting consistently

discriminative features. Hence, instead of increasing accuracy, the more complex architecture compromised

the stability of the learning process which ultimately led to a decline in overall performance. A major limitation

is that PSO often falls into local minima during optimization in large searching landscapes [26].

These results illustrate that a deeper network will not lead to better performance by

the mere act of increasing depth with no tuning of hyperparameters or regularization. In this situation, the

additional complexity likely caused overfitting or convergence issues, especially since Particle Swarm

Optimization (PSO) has been used in training and thus may need to be further tuned when the model is deeper.
Even with the implementation of a two-hidden-layer configuration, the results showed a further decline in

precision, recall, F1-score, and accuracy across individual classes, indicating that the deeper model did not

yield improved classification outcomes.

Future studies should consider the use of additional methods such as dropout, batch normalization, or

different activation functions to improve the model's capacity for effective learning of higher-dimensional class

distributions. This concept represents the anchor of the final conclusion for this study, which provides a

summary on the impacts of architectural depth and optimization strategies on classification results. This study

has several limitations. First, although the use of the Sasak script dataset with a large number of classes provides

a realistic representation of data complexity, it poses a significant challenge for the PSO-MLP model, as

performance decreases with the increasing number of classes and feature dimensions. Second, the model is

limited to an MLP architecture optimized with PSO, without the integration of advanced feature extraction
methods, data augmentation, or deep learning architectures such as CNNs, which are more suitable for large-

scale image data. Third, the experiments were only conducted on networks with one and two hidden layers,

leaving the potential of deeper architectures or hybrid approaches with other algorithms unexplored.

3.4 Testing On JAFFE (Japanese Female Facial Expression) Dataset

In addition this test uses a image datasets were used: facial expression images from the JAFFE

(Japanese Female Facial Expression) Database [27], and Sasak script character images. The JAFFE dataset

contains 210 grayscale images with a resolution of 256×256 pixels, classified into 7 fundamental facial

expressions. Graph illustrates how the error decrease as the number of iterations increase in the following

Figure 10.

Figure 10. Test Result Graph on JAFFE Dataset with 1 and 2 Hidden Layer

Experiments were conducted using a Multilayer Perceptron (MLP) architecture with both one and two

hidden layers, optimized using the Particle Swarm Optimization (PSO) algorithm. Both experiments were

performed under the same parameter settings: a population size of 200, a maximum of 500 iterations, and an

error threshold of 0.001.

The results of the study show that the model trained on the Sasak character dataset consistently

achieved higher classification accuracy compared to the model trained on the facial expression dataset with a

126 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

comparison of the number of datasets and the fewest classes from the Sasak script image testing. The model's

accuracy on the facial expression dataset was only 22% when testing with a single hidden layer; however, the

accuracy rose to 32% when using two hidden layers. Due to the small sample size and the high visual

complexity between facial expression classes, the model finds it challenging to identify unique patterns, which

may be the cause of the poor accuracy on facial images. On the other hand, the larger number of samples and

lower intra-class variation in the Sasak character dataset enabled the model to learn more effective feature

representations, resulting in significantly better classification performance overall.

4. CONCLUSION

This study successfully developed a classification model using a Multilayer Perceptron (MLP) trained

with the Particle Swarm Optimization (PSO) algorithm, addressing the demand for efficient automatic
classification systems in handling datasets of varying complexity. Initially, the model, which was previously

built without hidden layers, was enhanced by integrating hidden layers to evaluate performance across three

types of datasets: dummy data, the Iris dataset, and Sasak script image data. Experimental results showed that

the inclusion of hidden layers significantly improved performance on simpler datasets, with the model

achieving 100% accuracy on dummy data and 98% on the Iris dataset, demonstrating the strength of the PSO-

MLP combination in handling linearly separable and structured data.

However, when tested on the more complex Sasak script image dataset, the model's performance

declined with increased data complexity and class count. For 6, 12, and 18 classes, the model's accuracies with

a single hidden layer were 71%, 35%, and 27%, respectively. But the accuracy dropped dramatically to 56%,

25%, and 7% when two hidden layers were used. These findings imply that PSO struggles to generalize well

to high-dimensional, large-scale image data, even though it is successful at optimizing neural network
parameters for simpler datasets. This highlights a critical limitation of PSO in complex classification tasks, as

raised in the introduction and abstract.

This study expands upon the previous work[16] by conducting a more in-depth analysis of the impact

of varying the number of hidden layers in the MLP architecture on classification performance across datasets

of different complexity levels. The experimental findings suggest that adding more hidden layers does not

inherently enhance performance, especially when applied to the complex Sasak script image dataset. These

results highlight PSO's shortcomings in large-scale image classification tasks and imply that improvements

might be required, which could involve integrating CNNs or using hybrid optimization strategies. As a result,

this study not only highlights the PSO-MLP model's performance limitations but also offers a strong basis for

creating more sophisticated classification techniques in subsequent research.

The findings provide valuable insights for the development of automatic classification systems,

especially for the preservation and digitalization of traditional scripts such as the Sasak script. Furthermore,
the results highlight the strengths of PSO in handling simpler datasets, which can be leveraged in applications

requiring efficient optimization with limited computational resources. This study was limited to the use of MLP

with PSO optimization, without incorporating advanced feature extraction methods, data augmentation, or deep

learning techniques such as Convolutional Neural Networks (CNNs). As a result, the model’s performance on

complex multi-class image data was constrained.

Future studies should concentrate on examining hybrid optimization techniques that combine PSO

with other metaheuristic algorithms like Differential Evolution or Genetic Algorithms, or with gradient-based

learning. Furthermore, investigating convolutional neural networks (CNNs), dimensionality reduction, and

feature extraction strategies may help increase classification accuracy in image-based datasets such as the Sasak

script. These improvements are essential for creating classification systems that are more resilient, scalable,

and flexible so they can handle challenging real-world data situations.
Future research could specifically look into combining PSO with CNNs to optimize CNN

architectures' initial weights, hyperparameters, or filter configurations. By better utilizing the spatial and

hierarchical nature of image data, this hybrid approach may be able to overcome the optimization stagnation

seen in deep MLPs trained exclusively with PSO. Given the high-dimensionality and variability of the Sasak

script image dataset, such an approach may lead to improved generalization and accuracy, especially in multi-

class scenarios.

CONFLICT OF INTEREST STATEMENT

The authors state no conflict of interest.

REFERENCES
[1] T. Jung and J. Kim, “A New Support Vector Machine for Categorical Features,” Expert Syst. Appl., vol. 229, p. 120449, 2023,

doi: https://doi.org/10.1016/j.eswa.2023.120449.

[2] Y. J. Krishna, G. Murari, M. Murali, and P. Raghu, “IRIS Flower Species Prediction Using Machine Learning and Web Based

Interactive Tool for Non Technical Users,” pp. 1–6, 2025.

TIERS Information Technology Journal 127

Optimizing Neural Network Weights …(Made Agus Dwiputra)

[3] K. Su et al., “DctViT: Discrete Cosine Transform meet vision transformers,” Neural Networks, vol. 172, no. October 2023,

2024, doi: 10.1016/j.neunet.2024.106139.

[4] C. Chen, N. A. Mat Isa, and X. Liu, “A Review of Convolutional Neural Network Based Methods for Medical Image

Classification,” Comput. Biol. Med., vol. 185, p. 109507, 2025, doi: https://doi.org/10.1016/j.compbiomed.2024.109507.

[5] T. O. Aro, H. B. Akande, K. S. Adewole, K. M. Aregbesola, and M. B. Jibrin, “Enhanced Textual Data Classification using

Particle Swarm Optimization Algorithm,” J. ICT Dev. Appl. Res., vol. 2, no. April 2020, pp. 1–14, 2020.

[6] M. Ali et al., “Brain Tumor Detection and Classification Using PSO and Convolutional Neural Network,” Comput. Mater.

Contin., vol. 73, no. 3, pp. 4501–4518, 2022, doi: 10.32604/cmc.2022.030392.

[7] K. Tang and C. Meng, “Particle Swarm Optimization Algorithm Using Velocity Pausing and Adaptive Strategy,” Symmetry,

vol. 16, no. 6. 2024. doi: 10.3390/sym16060661.

[8] J. C. Bastiaans, J. Hartojo, R. A. Pramunendar, and P. N. Andono, “Evaluating the Impact of Particle Swarm Optimization Based

Feature Selection on Support Vector Machine Performance in Coral Reef Health Classification,” IJNMT (International J. New

Media Technol., vol. 11, no. 2, pp. 90–99, Jan. 2025, doi: 10.31937/ijnmt.v11i2.3761.

[9] L. I. LI, “Application of Artificial Neural Networks and Genetic Algorithm in Optimization of Concrete Shear Wall Design,”

Int. J. Interact. Des. Manuf., vol. 18, no. 7, pp. 4775–4785, 2024, doi: 10.1007/s12008-024-01739-9.

[10] P. Singh, S. Chaudhury, and B. K. Panigrahi, “Hybrid MPSO-CNN: Multi-level Particle Swarm Optimized Hyperparameters of

Convolutional Neural Network,” Swarm Evol. Comput., vol. 63, p. 100863, 2021, doi:

https://doi.org/10.1016/j.swevo.2021.100863.

[11] X. Liu, C. Zhang, Z. Cai, J. Yang, Z. Zhou, and X. Gong, “Continuous Particle Swarm Optimization-Based Deep Learning

Architecture Search for Hyperspectral Image Classification,” Remote Sensing, vol. 13, no. 6. 2021. doi: 10.3390/rs13061082.

[12] D. Elhani, A. C. Megherbi, A. Zitouni, F. Dornaika, S. Sbaa, and A. Taleb-Ahmed, “Optimizing convolutional neural networks

architecture using a modified particle swarm optimization for image classification,” Expert Syst. Appl., vol. 229, p. 120411,

2023, doi: https://doi.org/10.1016/j.eswa.2023.120411.

[13] A. Ye, X. Zhou, and F. Miao, “Innovative Hyperspectral Image Classification Approach Using Optimized CNN and ELM,”

Electronics, vol. 11, no. 5. 2022. doi: 10.3390/electronics11050775.

[14] A. Rashno and S. Fadaei, “Convolutional Neural Networks Optimization Using Multi-Objective Particle Swarm Optimization

Algorithm,” Inf. Sci. (Ny)., vol. 689, p. 121443, 2025, doi: https://doi.org/10.1016/j.ins.2024.121443.

[15] W. Hussain et al., “Ensemble Genetic and CNN Model-Based Image Classification by Enhancing Hyperparameter Tuning,” Sci.

Rep., vol. 15, no. 1, pp. 1–24, 2025, doi: 10.1038/s41598-024-76178-3.

[16] L. Abualigah, “Particle Swarm Optimization: Advances, Applications, and Experimental Insights,” Computers, Materials \&

Continua , vol. 82, no. 2. 2025. doi: 10.32604/cmc.2025.060765.

[17] Y. Zhou, “Study for Iris Classification Based on Multiple Machine Learning Models,” Highlights Sci. Eng. Technol., vol. 23,

pp. 342–349, 2022, doi: 10.54097/hset.v23i.3620.

[18] Y.-T. Jou, H.-L. Chang, and R. M. Silitonga, “Sustainable Optimization of the Injection Molding Process Using Particle Swarm

Optimization (PSO),” Applied Sciences, vol. 15, no. 15. 2025. doi: 10.3390/app15158417.

[19] Z. Zhao, C. Yang, Z. Qiu, and Q. Wu, “Discrete Cosine Transform-Based Joint Spectral–Spatial Information Compression and

Band-Correlation Calculation for Hyperspectral Feature Extraction,” Remote Sensing, vol. 16, no. 22. 2024. doi:

10.3390/rs16224270.

[20] Q. Zeng, B. Hui, Z. Liu, Z. Xu, and M. He, “A Method Combining Discrete Cosine Transform with Attention for Multi-Temporal

Remote Sensing Image Matching,” Sensors, vol. 25, no. 5. 2025. doi: 10.3390/s25051345.

[21] R. V. Nahari, A. S. Editya, and R. Alfita, “Ekstrasi Fitur Daun Tembakau Berbasis Discrete Cosine Transform (DCT),” J. Appl.

Informatics Comput., vol. 4, no. 1, pp. 8–12, 2020, doi: 10.30871/jaic.v4i1.1756.

[22] M. Maimouni, A. E. M. Badr, and M. and Bouya, “RFID Network Planning Using a New Hybrid ANNs-Based Approach,”

Conn. Sci., vol. 34, no. 1, pp. 2265–2290, Dec. 2022, doi: 10.1080/09540091.2022.2115011.

[23] I. Classification, “Texture Filter Optimization Using Particle Swarm Optimization for Efficient Lung Image Classification,” J.

Popul. Ther. Clin. Pharmacol., vol. 30, no. 15, pp. 67–75, 2023, doi: 10.47750/jptcp.2023.30.15.007.

[24] S. Lankford and D. Grimes, “Neural Architecture Search Using Particle Swarm and Ant Colony Optimization,” CEUR Workshop

Proc., vol. 2771, pp. 229–240, 2020.

[25] S. Rahnamayan, P. Mazaheri, and A. Asilian Bidgoli, “Designing Artificial Neural Network Using Particle Swarm Optimization:

A Survey,” M. A. Aceves-Fernández, Ed., Rijeka: IntechOpen, 2022. doi: 10.5772/intechopen.106139.

[26] S. Aote, M. M. Raghuwanshi, and L. Malik, “Brief Review on Particle Swarm Optimization: Limitations & Future Directions,”

Int. J. Comput. Sci. Eng., vol. 2, pp. 196–200, Jan. 2013.

[27] M. Kamachi, M. Lyons, and J. Gyoba, “The Japanese Female Facial Expression (JAFFE) Database,” Availble http//www. kasrl.

org/jaffe. html, Jan. 1997.

128 ISSN: 2723-4533 / E-ISSN: 2723-4541

 TIERS Information Technology Journal, Vol. 6, No. 1, June 2025:112-128

BIOGRAPHIES OF AUTHORS

Made Agus Dwiputra completed his Bachelor's degree in Informatics Engineering from
the University of Mataram, Indonesia, with a specialization in artificial intelligence. His
research interests encompass intelligent systems, cloud computing, and optimization

algorithms in machine learning. During his studies, he participated in the Kampus Merdeka
program, focusing on cloud computing, where he developed projects utilizing the Google
Cloud Platform. In addition, he made significant contributions to student organizations,
achieving over 90% completion of the assigned work programs during his tenure. He
possesses programming skills in Python and Java. He can be contacted via email at
agusdwiputram@gmail.com.

I Gede Pasek Suta Wijaya is a full-time lecturer in the Informatics Engineering
Study Program at the Faculty of Engineering, University of Mataram. He holds a Master’s
degree in Information Engineering from Gadjah Mada University and a Doctorate from
Kumamoto University, Japan. His research interests span artificial intelligence, digital
image processing, machine learning, and intelligent systems. In addition to teaching core

informatics courses, he actively supervises students, participates in applied research, and
contributes to the development of outcome-based curricula. He is also engaged in both
national and international research collaborations and scientific publications. He can be
contacted via email at gpsutawijaya@unram.ac.id.

Wirarama Wedashwara completed his doctoral program in Computer Science
and Design Engineering at Yamaguchi University in 2016. Prior to this, he pursued a
Master's degree in Energy Management and a Bachelor's degree in Electrical Engineering
at Udayana University. His research interests encompass the application of evolutionary

computation and fuzzy databases to big data, the Internet of Things (IoT), and parallel
processing. His work primarily utilizes evolutionary fuzzy association rule mining derived
from genetic network programming. Additionally, his research extends to text classification
using genetic programming. He can be contacted via email at wirarama@unram.ac.id.

https://orcid.org/0000-0002-3813-013X
https://scholar.google.com/citations?user=bqRGQZkAAAAJ&hl=id, h-index=
https://www.scopus.com/authid/detail.uri?authorId=23494142600
https://orcid.org/0000-0002-3716-1620
https://scholar.google.com/citations?user=3e_CnvwAAAAJ, h-index= 5;
https://www.scopus.com/authid/detail.uri?authorId=56426367900

