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ABSTRACT 

This study presents a comparative analysis of two deep learning object detection models, YOLOv5n and YOLOv8n, for 
the precies identification of Klowong defects in batik fabric. The evaluation was carried out using a custom dataset 
consisting of 3,138 annotated images, with 921 allocated for testing and containing 1,295 defect instances across nine 
defect classes. The main findings show that YOLOv8n outperforms YOLOv5n in both speed and accuracy. YOLOv8n 
achieved a higher F1-score of 0.87 at a lower confidence threshold (0.297), compared to YOLOv5n’s F1-score of 0.86 at 
a higher threshold (0.46). In addition, YOLOv8n reduced training time significantly (0.320 hours vs. 0.868 hours) and 

delivered much faster inference speed (2.9 ms/image), nearly three times quicker than YOLOv5n. Although both models 
performed well in detecting common defects, YOLOv8n showed more stable results on complex defect types. These 
improvements make YOLOv8n more suitable for real-time applications in batik production environments. Its efficiency 
and accuracy support the development of fast and reliable automated quality control systems in traditional textile 
industries. This research emphasizes the importance of using modern lightweight architectures like YOLOv8n to enhance 
defect detection performance in practical manufacturing settings.  
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1. INTRODUCTION 

Batik was officially recognized by UNESCO in 2009 as a Masterpiece of the Intangible and Oral 

Heritage of Humanity, emphasizing its importance in the context of Indonesian culture [1], [2]. Since the 

recognition, the Batik industry has experienced significant growth and has become a vital component of the 

national creative economy [1]. Beyond national significance, batik has also gained international appreciation 
as a textile art form characterized by the use of dyes and wax to create intricate patterns and culturally 

meaningful designs [3], [4]. The making of batik not only requires artistic craftsmanship but also represents 

the philosophical and symbolic identity of the communities that produce it [5], [6]. 

Tradionally, batik is created by applying hot wax onto the fabric using tools such as canting tulis and 

canting cap [3]. Based on the production technique, batik is generally classified into two types: hand-drawn 

batik (batik tulis), which is produced manually with canting, and stamped batik (batik cap), which is made 

using stamping machines for mass production [2]. According to UNESCO, authentic Indonesian batik is 
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defined as cloth whose motifs are created manually using hot wax and applied with the hand using a canting 

[2].  

The batik-making process typically consists of four main stages: (1) designing the motif, either based 

on traditional heritage or modern innovation [7], (2) applying hot wax in the klowong process, which is the 

most time-consuming and accuracy-demanding phase [8], (3) initial coloring, and (4) the final nembok process 

that ensures color separation and motif clarity [7], [8]. Among these, the klowong process is particularly labor-
intensive and requires high precision in following the pattern lines, which often poses a significant bottleneck 

in production time [9]. 

  The klowong is the process of applying wax to the patterns that have been previously drawn with 

pencil on the fabric. The klowong process constitutes a pivotal phase in traditional batik craftsmanship, 

characterized by the selective application of molten wax onto designated fabric regions that have been 

previously outlined with preliminary pencil markings, serving as a resist medium to prevent dye penetration in 

subsequent coloring stages [10]. The selection of appropriate wax compositions is paramount, typically 

involving a blend of beeswax, paraffin wax, and dammar resin, each contributing unique properties such as 

melting point, flexibility, and adhesion to the fabric [11]. One example of the klowong process is shown in 

Figure 1. 

 
Figure 1. Klowong Process 

One of the most critical challenges in hand-drawn batik production is the manual defect inspection, 

especially during the klowong stage [1]. In this context, a defect refers to an unwanted anomaly or irregularity 

that occurs during the batik-making process, potentially degrading the visual quality or integrity of the motif. 

These defects may stem from human error, equipment issues, or material inconsistencies. 

In particular, nine types of klowong defects are frequently encountered during inspection such as 
defect 1 (oil stain), defect 2 (hole), defect 3 (broke yarn), defect 4 (fabric penetration), defect 5 (line continuity), 

defect 6 (pattern corner quality), defect 7 (line thickness continuity), defect 8 (line deviation), and defect 9 

(droplet) [1]. These defects disrupt motif quality and can significantly impact the aesthetic and commercial 

value of the final product. Therefore, detecting these flaws accurately during production is essential to 

maintaining quality standards.  

Furthermore, this process is not only time-consuming but also prone to subjective human judgment, 

leading to inconsistencies and potential quality issues [1]. Furthermore, errors occurring at this stage often 

result in rework or fabric rejection, thereby reducing overall production efficiency [7], [9]. To address this, 

some batik manufacturers have begun implementing CNC technology to accelerate the klowong process while 

preserving the essence of traditional batik-making [12]. 

The traditional batik industry continues to face broader challenges in balancing production efficiency, 

product quality, cultural preservation, and market responsiveness [13]. These include the need for effective 
quality control systems, cost-efficient production methods, and sustainable integration of modern technology. 

In this context, the development of automated inspection systems is essential to ensure consistent quality and 

minimize waste. Automatic detection can serve as an early warning mechanism, identifying defects before the 

klowong process is completed, thus reducing the likelihood of production failure [1]. 

Recents advancements in textile inspection technologies have introduced high-precision fabric defect 

detection systems for complex and high-variation fabric textures [14]. In response to this, the present study 

proposes the development of an automated detection model with high accuracy and efficiency, specifically 

targeted for implementation at the Batik Butimo center. This model is integrated into a real-time defect 

detection system designed to monitor the klowong process, providing immediate feedback to production 

operators [15], [16]. By incorporating this system, the batik production process at Butimo is expected to 

become more standardized, productive, and reliable.  
 In the study presented by [17], the researchers addressed the challenge of detecting fabric defects, 

highlighting a key issue such as methods that perform well for large defects often fail with small ones, and vice 

versa. This reciprocal contradiction is particularly difficult to resolve using a single detection method, 

especially when dealing with colored fabrics [17]. To tackle this, the study introduced a hybrid approach that 

combines two architectures—Squeeze and Excitation Network (SE-Net) and Single Shot Multibox Detector 

(SSD) [17]. The SE module is applied to enhance the model's focus on feature channels rich in defect-related 
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information, while the SSD architecture retains its original function of extracting multi-scale feature maps [17]. 

Experimental results demonstrated that this combined method is capable of identifying six different defect 

types in colored fabrics, effectively meeting practical application requirements [17].   

 Subsequent research by [18] explores an efficient and rapid approach for fabric defect detection. The 

YOLO (You Only Look Once) family of models continues to hold a prominent role in object detection tasks 

[18]. To enhance performance, the study incorporates several improvements, including a combined data 

augmentation strategy to increase dataset diversity and enhance model robustness [18]. Additionally, the 

researchers applied the k-means clustering algorithm to the ground truth bounding boxes in order to generate 

optimal anchor boxes tailored for fabric defect detection [18]. A new prediction layer was also added to the 

yolo_head component, aiming to improve the detection of small-sized defects [19]. Moreover, the study [19] 
integrated the Convolutional Block Attention Module (CBAM) into the model’s backbone to refine feature 

extraction and emphasize defect-relevant information [19]. The experimental results show that compared with 

the original YOLOv4 algorithm, the detection accuracy of the improved YOLOv4 algorithm for small targets 

is significantly improved, with the Average Precision (AP) value for small target detection increased by 12% 

and the overall average precision (mAP) increased by 3%. The prediction results of the proposed algorithm 

can provide more accurate defect positions for enterprises, reduce the defect rate of fabric products, and 

improve their economic impact [19]. 

 Detecting defects in fabrics or batik presents a significant challenge in vision-based quality inspection 

systems, particularly when the defects are small and embedded within complex backgrounds such as batik 

patterns. Various YOLO-based object detection models have been applied in this domain, but their 

effectiveness in detecting tiny objects heavily depends on architectural enhancements and optimization 
strategies. YOLOv8 has shown strong performance in general textile defect detection, offering improved 

energy efficiency, higher accuracy, and faster inference compared to its predecessors [20]. Recent studies have 

introduced significant improvements to YOLOv5n and YOLOv8n lightweight variants designed for real-time 

applications with limited computational resources. For instance, YOLOv8n incorporates a new backbone 

architecture based on C2f modules, streamlined model heads, and enhanced label assignment strategies, all 

contributing to superior performance in both speed and detection accuracy. YOLOv5n, while earlier, 

introduced anchor-free detection and optimized training strategies that improved model robustness in 

constrained environments [18]. 

 While numerous lightweight object detectors exist such as YOLOv7-Tiny, YOLOv6-Nano, and 

MobileNet-SSD, the current study focuses on benchmarking YOLOv5n and YOLOv8n due to their balance 

between simplicity, accessibility, and proven effectiveness in prior industrial applications. These models are 

also supported by active development communities and integrated into widely used open-source frameworks, 
which ensures reproducibility and maintainability for industrial deployment. The decision to exclude other 

lightweight detectors was made based on preliminary assessments, where YOLOv5n and YOLOv8n showed 

superior inference speeds and accuracy trade-offs in textile, relevant tasks while maintaining model 

compactness [21], [22]. Although models like YOLOv7-Tiny and MobileNet-SSD were initially considered, 

they were ultimately excluded due to either lower detection consistency in early tests or limited support for 

streamlined integration into the batik defect detection pipeline.  

 Despite advancements in YOLO-based detection, no previous studies have explicity benchmarked 

lightweight YOLO architectures within the specific visual context of Klowong batik defects, characterized by 

intricate, highly variable patterns and subtle color gradients. In response to this gap, this study presents the first 

direct architectural benchmark between YOLOv5n and YOLOv8n for detecting Klowong batik defects. The 

goal is to evaluate detection performance in terms of precision, inference speed, and training efficiency. Unlike 
general textile studies, this work focuses on domain-specific implementation, where traditional batik motifs 

require fine-grained feature discrimination and strong generalization across diverse pattern complexities. This 

explicit comparison contributes novel insights into the applicability of modern object detection architectures 

for quality control in heritage textile production, bridging computer vision with cultural preservation efforts 

[23], [24], [25].    

2. RESEARCH METHOD 

2.1. Data Collection 

  The object used in this study is a collection of handcrafted batik products produced using CNC 

machines by artisans at Batik Butimo, located in Bantul, Yogyakarta. The dataset acquisition process utilized 

the following tools; Fujifilm camera with a 35 mm lens, tripod, a 2.5 m x 1.15 m batik frame, measuring tape, 

,60 mm paper clips to secure the fabric during photography, and a Dell Latitude 7420 laptop. The dataset 

consisted of 44 handcrafted batik klowong motifs as the primary research material. These were photographed 
under controlled lighting and distance settings to ensure consistency across all samples. Annotation was 

conducted using the Labelimg software, while model training and testing were performed on Google Colab.   
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  The process begins with the digital camera is positioned perpendicular to the fabric using a certain 

predetermined distance so that the image results are consistent between samples. Each batik motif is 

photographed from several angles and distances so that the variety of images can capture possible defects that 

are not visible from just one angle. The whole process is systematically carried out and controlled to ensure 

that each image meets the quality standards required for training the defect detection model. This data becomes 

the basis for labeling and annotation as input to the YOLO model training process. 
  The dataset consists of 3.138 images of batik fabrics that have been produced by Batik Butimo. Each 

image is acquired under customized lighting conditions, and then the types of defects such as pattern breaks, 

stains, or motif line mismatches are identified. Subsequently, defect identification was conducted, focusing on 

flaws in the klowong process, using a deep learning approach, particularly computer vision, by implementing 

the You Only Look Once (YOLO) architecture and Design of Experiments (DOE).  

  To prepare the dataset for training, each image was annotated manually using bounding boxes to mark 

the location and type of defect. The annotation process was performed manually, with 1 to 3 defects annotated 

per image, depending on the presence and clarity of visual anomalies. Rather than free-hand labeling, the 

annotations were guided by predefined pattern references (batik motif outlines), enabling consistent placement 

of bounding boxes in alignment with the klowong batik design. This structured annotation method reduced 

subjectivity and ensured that the defect labeling closely followed the intended motif contours. The use of 

pattern-based annotation contributed to generating a reliable and representative ground truth dataset for training 
and evaluating the detection model. 

 

2.2. Preprocessing  
  After collecting the data, the preprocessing stage in this study began with the acquisition of raw image 

data. A total of 3,138 images of the klowong batik process were collected, each with a standardized resolution 

of 640 x 640 pixels to ensure uniformity in subsequent processing stages. One example of the collected image 

is shown in Figure 1. 

 
Figure 1. The example of Klowong Process Image 

   The preprocessing stage involved several key steps. First, image standardization was applied to 

ensure consistent dimensions across the dataset. Next, a data cleaning process was performed to remove low-

quality images such as those that were blurry, underexposed, or irrelevant. Following this, a crucial step of 

defect editing was carried out on the entire dataset. This editing process involved manually annotating defective 

areas such as oil stains, ink bleeds, or pattern irregularities by using bounding boxes to mark regions of interest. 

There are nine defect classes that have been created for the data augmentation process [1].   

  To enhance model generalization and improve robustness agains variations in image orientation and 

lighting, several augmentation techniques were applied. These include HSV color augmentation to adjust hue, 

saturation, and value; horizontal and vertical flipping to simulate mirrored defects; random rotation; saling; 

brightness adjustment; and copy-paste augmentation, which introduces synthetic defect instances by 

duplicating and repositioning defect regions within the same image. The application of these augmentations 

aims to simulate diverse real-word conditions and reduce overfitting by exposing the model to a wider range 
of defect appearances during training [1].   

  These nine defects commonly found in batik fabrics include defect 1 (oil stain), defect 2 (hole), defect 

3 (broke yarn), defect 4 (fabric penetration), defect 5 (line continuity), defect 6 (pattern corner quality), defect 

7 (line thickness continuity), defect 8 (line deviation), and defect 9 (droplet) [1]. Defect 1, also known as 

mbleber, refers to the spread of dye or batik ink beyond the intended boundaries of the motif, resulting in 

blurred and imprecise patterns that diminish the visual sharpness and aesthetic of the design. Defect 2 consists 

of small holes or tears on the fabric surface, typically caused by mechanical damage during handling or 

production, which disrupt the batik pattern and appear as empty or damaged spots. Defect 3, or broken yarn, 

occurs when threads within the woven fabric break, leading to uneven surfaces and distortion of the batik 

pattern, which may compromise both the strength and appearance of the fabric. Defect 4, referred to as fabric 

penetration, involves unwanted transparency or light passing through due to thin or weakened areas in the 
cloth, which lowers both the visual and structural quality. Defect 5 pertains to discontinuity in batik lines, 

where broken or inconsistent line flow disrupts the pattern’s integrity and compromises the design’s harmony. 
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Defect 6, or poor pattern corner quality, describes imprecise or untidy motif corners that lack sharpness or 

become overly rounded, thereby reducing the visual definition of the pattern. Defect 7 involves inconsistency 

in line thickness across the motif, where irregularities such as lines being too thick or thin can create an 

unbalanced appearance and reduce the overall aesthetic quality. Defect 8, known as line deviation, occurs when 

motif lines deviate from their intended path, resulting in asymmetrical patterns that impair the design’s 

precision. Lastly, defect 9, called droplet or netes, appears as unintended small spots or ink droplets that stain 

the fabric, disrupting the motif and making the cloth appear dirty or flawed. 

  Furthermore, visual improvements like enhancing contrast in defect regions were implemented to help 

the object detection model better identify these areas. To expand and diversify the dataset, additional 

augmentation methods such as rotation, flipping, zooming, and brightness modification were utilized. These 
techniques were intended to boost the model’s robustness by providing a wider range and greater volume of 

training data. 

 

2.3. Labeling Process (Bounding Box) 

  The labeling process in this study involved annotating each defect in the batik images using bounding 

boxes to specify their position and class. This labeling stage is essential for training object detection algorithms 

like YOLO (You Only Look Once). The labeling was performed using annotation software like ‘Labeling’, 

which generates a .txt file for each image. The labeling was carried out manually because approximately half 

of the defect classes are identified based on pattern characteristic rather than distinct shapes, requiring human 

judgement to ensure accurate annotation. 

  These files contain bounding box information in YOLO format, structured as: class_id; x_center; 
y_center; width, and height. Here, class_id refers to the class index of the defect based on the training class 

list. The x_center and y_center represent the normalized coordinates of the box center, divided by the image 

width and height respectively, producing values between 0 and 1. Similarly, the width and height of the 

bounding box are also normalized. The following shows examples of the nine defects that have undergone the 

labeling process. 

 
Figure 2(a). Defect 1 

 
Figure 2(b). Defect 2 

 
Figure 2(c). Defect 3 

 
Figure 2(d). Defect 4 

 
Figure 2(e). Defect 5 

 
Figure 2(f). Defect 6 

 
Figure 2(g). Defect 7 

 
Figure 2(h). Defect 8 

 
Figure 2(i). Defect 9 

  At this stage, the annotated dataset is divided into three parts, namely taining data, validation data, 

and testing data. The total dataset consisted of 3.138 batik images. From this, a subset of 2.217 images was 

allocated for training and validation purposes using an 80 : 20 split. Specifically, 80% of the 2.217 images were 

used for model training, while the remaining 20% were used for validation. Training data is used to train the 

model to recognize patterns and important features of defects in batik cloth, validation data is used to monitor 

features of defects in batik cloth, validation data is used to monitor the performance of the model during training 
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to prevent overfitting. On the other hand, the test dataset was reserved for the final evaluation phase after model 

training was completed. A total of 921 images were specifically allocated for testing purposes to measure how 

well the model generalizes to new data. This separation guarantees that the test images remain entirely unseen 

during both training and validation, enabling an unbiased evaluation of the model’s performance in real-world 

conditions. 

 

2.4. Model Architecture  
  The structure of an object detection model significantly influences its performance in terms of 

accuracy, speed, and adaptability to different use cases. This research explores two cutting-edge models such 

as YOLOv5n and YOLOv8n selected for their notable improvements in both detection efficiency and precision. 

Both models employ convolutional neural network backbones optimized for feature extraction, but they differ 

in architectural design and optimization strategies. Understanding the structural differences and the 

components of these models is essential to analyze their comparative performance effectively. 

  Furthermore, while the section on model training and architecture provides a clear description of the 

differences between YOLOv5n and YOLOv8n, it is also important to elaborate on the rationale behind 

selecting these particular models [26], [27]. YOLOv5n and YOLOv8n represent lightweight yet high-

performing architectures that are well-suited for real-time detection tasks, making them highly relevant for 

detecting fine-grained defects in batik fabrics, which often contain intricate patterns and subtle imperfections. 
Their balance between model size, inference speed, and detection accuracy aligns well with the operational 

constraint typically found in textile manufacturing environments, such as limited hardware resources and the 

need for rapid inspection [28]. By evaluatin both models, this study aims to identify the most effective solution 

for automated batik defect detection in practical applications. 

 

2.5. Model Training and Architecture 

  The initial training process of the YOLO (You Only Look Once) models, specifically YOLOv5n and 

YOLOv8n, was conducted to evaluate their performance under different optimization schemes. Both models 

were trained on the same dataset with consistent hyperparameter settings to ensure a fair comparison. The input 

image size (mg) was set to 640 pixels, batch size to 32, and the number of training epochs to 100. 

 

2.6. Optimizer Configuration 

  A notable distinction between the two models lies in their respective optimizers, which were not 

manually modified but rather retained as part of each model’s default configuration. YOLOv5 utilizes the 

Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.01, while YOLOv8n adopts AdamW 

with a learning rate of 0.000768. This difference arises from the intention to evaluate each model in its original, 

unaltered state, thereby reflecting the design choices made by the respective developers. YOLOv5’s use of 

SGD, a classical optimizer that leverages momentum and learning rate schedules, contrast with YOLOv8n’s 

adoption of AdamW, an adaptive optimizer known for its ability to decouple weight decay from the gradient 

update and improve generalization. By maintaining the default settings, this study aims to compare the 

performance of both models as they are typically deployed out-of-the-box, offering a fair and practical 

benchmark for real-world applications. 
  The rationale for retaining the default optimizer settings is to ensure a fair and practical benchmark 

that reflects the standard behavior of each model when deployed out-of-the-box. These default configurations 

are typically selected and fine-tuned by the developers to suit the underlying architecture. Additionally, by 

maintaining these defaults, this study avoids the introduction of bias from manual hyperparameter tuning, 

allowing for a clearer assessment of how each model performs under its intended optimization strategy. This 

distinction in optimizer design can influence convergence speed, stability during training, and ultimately the 

generalization performance on unseen data. 

 

2.7. Backbone Architecture 

  The backbone network, responsible for feature extraction in both models, differs significantly in 

design and complexity. YOLOv8n utilizes a lightweight and efficient backbone based on the Cross Stage 

Partial Network (CSPDarknet) architecture. CSPDarknet is designed to reduce computational cost while 
maintaining strong representational power, optimizing the balance between inference speed and detection 

accuracy. YOLOv5n, on the other hand, employs CSPDarknet53, an extension of the original Darknet53 

architecture used in YOLOv3. CSPDarknet53 introduces cross-stage partial connections to enhance gradient 

flow and reduce computational redundancy, resulting in a deeper and more complex network that is capable of 

extracting more detailed feature representations. 
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2.8. Evaluation Metrics 

  The evaluation of model performance is based on several key metrics such as Precision, Recall, 

mAP50, and mAP50-95. Precision indicates how accurately the model identifies true positives among all 

predicted detections, while Recall measures the model’s capability to detect all actual objects within the dataset. 

The mAP50 metric, or mean Average Precision at an IoU threshold of 0.5, reflects the average detection 

accuracy when predictions overlap the ground truth by at least 50%. Meanwhile, mAP50-95 extends this by 

averaging precision across IoU thresholds ranging from 0.5 to 0.95, offering a more thorough and rigorous 

assessment. These metrics are essential for evaluating and comparing the detection performance of YOLOv5n 

and YOLOv8n models. 

3. RESULTS AND DISCUSSION 

3.1. Base Model Validation of YOLOv5n  

The validation of the base YOLOv5n model was performed to assess its effectiveness in detecting 
multiple defect classes within the test dataset. The dataset comprised 443 images containing a total of 728 

instances of nine distinct defect types. Model evaluation metrics including Precision, Recall, mean Average 

Precision at IoU threshold 0.5 (mAP50), and mean Average Precision across IoU thresholds 0.5 to 0.95 

(mAP50-95) were computed for each defect class as well as overall. These metrics provide insight into the 

model’s detection accuracy, sensitivity, and localization performance across varying degrees of overlap 

between predicted and ground truth bounding boxes. Figure 3 shows the detailed validation results for each 

defect class, highlighting both strengths and weaknesses of the model’s detection capability. 

 
Figure 3. Base Model Validation of YOLOv5n  

Among the individual classes, Defect1 and Defect2 exhibited the highest detection performance, both 

achieving near-perfect Recall (1.0) and Precision values above 0.99, with mAP50 scores of 0.995. This suggests 

that the model is highly effective at detecting these defect types with minimal error. 

In contrast, Defect 8 stands out as the class with the lowest performance metrics, having a Precision 

of 0.789, Recall of 0.593, and an mAP50 of 0.662. This indicates that the model struggled to accurately detect 

Defect8 instances, likely due to more subtle or complex visual characteristics. Additionally, Defect 8 records 

the lowest mAP50-95 score of 0.24 among all classes, highlighting the particular difficulty in achieving precise 

localization and classification for this defect type. 

The F1-score, representing the harmonic mean of Precision and Recall, averaged across all classes, 
reached its highest value of 0.86 at a confidence threshold of 0.460. This indicates a balanced trade-off between 

precision and recall for the overall model performance. 

In summary, the base YOLOv5n model demonstrates strong overall detection capabilities with 

excellent performance on some defect classes, while indicating potential areas for enhancement in detecting 

certain defects, especially Defect 8, which exhibited the lowest precision and recall values. 

3.2. Test Base Model of YOLOv5n 

The test results of the base YOLOv5n model were obtained on an extended dataset comprising 921 

images and 1295 defect instances across the same nine defect classes. Figure 4 presents the performance 

metrics including Precision (P), Recall (R), mAP50, and mAP50-95 for each defect class and overall. 

 
Figure 4. Test Base Model of YOLOv5n  
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 Comparing the test results with the previous validation outcomes reveals several notable changes. The 

overall Precision decreased slightly from 0.89 to 0.855, while Recall experienced a more pronounced drop 

from 0.837 to 0.757. This reduction in Recall indicates a decrease in the model’s ability to detect all relevant 

defect instances on the larger test set, potentially due to increased data variability or more challenging samples. 

The mAP50 value also dropped from 0.872 in validation to 0.793 during testing, reflecting a decline in the 

model’s average detection accuracy at the 0.5 IoU threshold. Similarly, mAP50-95 decreased from 0.493 to 
0.44, indicating less robust performance across stricter localization thresholds. 

 At the class level, several defect types showed significant performance shifts. For example, Defect 6 

exhibited a dramatic decrease in Precision (from 0.877 to 0.786) and Recall (from 0.765 to 0.395), leading to 

a sharp drop in mAP50 from 0.863 to 0.468. This suggests the model struggles considerably with this defect 

under testing conditions. Defect 8 also showed further degradation, with Precision dropping to 0.65 and Recall 

to 0.545, reaffirming its status as one of the most challenging defect categories to detect.  

These performance variations underscore the importance of evaluating models on sufficiently diverse 

and comprehensive datasets to capture real-world complexities. The test results provide valuable insights for 

further model improvements, particularly targeting defect classes with significant declines in detection metrics. 

Figure 5 and Figure 6 shows the defect detection results obtained from the proposed model compared 

to the original labeled data. These visualizations demonstrate the model’s capability in accurately identifying 

and localizing various defect types on batik fabric samples. The predicted bounding boxes and confidence 
scores are presented alongside the ground truth annotations for direct comparison. 

 
Figure 5. Predicted Defect by The YOLOv5n 

 
Figure 6. Truth Defect Labeling on Batik Fabric 

As shown in Figure 5, the model successfully detected multiple defect instances with varying 

confidence levels, demonstrating its ability to handle different defect classes and complexities. The predicted 

bounding boxes closely align with the ground truth labels displayed in Figure 6, indicating reliable localization 
accuracy. Some minor discrepancies in bounding box size and positioning are observed, which may be 

attributed to the inherent variability in defect shapes and patterns. Overall, these qualitative results confirm that 

the model effectively generalizes to real batik fabric images and is capable of precise defect detection, 

supporting its practical application for automated quality control. 

3.3. Base Model Validation of YOLOv8n 

The baseline YOLOv8n model was validated to evaluate its ability to accurately detect various defect 

classes within the test dataset. This dataset included 443 images, encompassing a total of 728 annotated 

instances across nine different defect categories. Performance metrics such as Precision, Recall, mean Average 

Precision at an IoU threshold of 0.5 (mAP50), and mean Average Precision across a range of IoU thresholds 

from 0.5 to 0.95 (mAP50-95)—were calculated for each defect type individually as well as in aggregate. These 

measurements offer a comprehensive understanding of the model’s accuracy, sensitivity, and effectiveness in 

localizing defects at different levels of prediction-ground truth overlap.  

For instance, while YOLOv8n demonstrates improved F1 scores and faster inference time compared 

to YOLOv5n, it is important to consider the trade-offs between precision, recall and inference speed. A higher 
precision may lead to fewer false positives but could reduce recall if the model becomes too conservative in 

making predictions. Conversely, optimizing for recall might increase false positives. In real world applications, 

such as real-time defect detection in textile production, these trade-offs must be carefully balanced to ensure 

optimal performance under operational constraint. Figure 7 presents the complete validation results by defect 

type, emphasizing the model’s strengths and areas that require improvement. 
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Figure 7. Base Model Validation of YOLOv8n 

Among all defect classes, Defect 1 and Defect 2 exhibited the highest detection performance. Both 

classes achieved Recall values of 1.0 and Precision values above 0.94, with mAP50 scores of 0.995 and 0.989, 

respectively. This indicates that YOLOv8n is highly reliable in identifying these types of defects with minimal 

misclassification. Conversely, Defect 4 showed the lowest overall performance, with a Precision of 0.773 and 

a Recall of 0.864. Although the Recall remains reasonably high, the mAP50 dropped to 0.878 and the mAP50-

95 to 0.604, making it the weakest among the higher-performing classes. This suggests that while the model 

detects most instances of Defect 4, the localization or bounding box accuracy might still require refinement. 

Additionally, Defect8 also displayed relatively weaker results compared to other classes, with a lower 

Recall of 0.698 and the lowest mAP50-95 score of 0.270. This further highlights the need for improvement in 

detecting more visually complex or ambiguous defect types. The F1-score, calculated as the harmonic mean of 
Precision and Recall across all classes, achieved a maximum value of 0.87 at a confidence threshold of 0.297. 

This reflects the optimal balance point for classification performance, affirming that the model performs most 

effectively around this confidence setting. 

In conclusion, the YOLOv8n base model demonstrates strong and efficient detection capabilities, 

particularly for certain defect types, while also revealing areas for improvement—most notably in the detection 

precision and bounding box localization of Defect 4 and Defect 8. These two defect types present specific 

challenges for the model due to their subtle visual characteristics and high variability in shape, size, and texture. 

For instance, Defect 4 often appears with blurred or irregular boundaries that resemble natural batik motifs, 

making it difficult to distinguish from non-defective areas. Meanwhile, Defect 8 tends to have small sizes and 

low contrast against the surrounding pattern, causing the model to miss or inaccurately localize the defect. This 

explains why both models struggle with these classes, despite overall strong performance. 

3.4. Test Base Model of YOLOv8n 

The test results of the base YOLOv8n model were obtained on an extended dataset comprising 921 
images and 1295 defect instances across the same nine defect classes. Figure 8 presents the performance 

metrics including Precision (P), Recall (R), mAP50, and mAP50-95 for each defect class and overall. 

 
Figure 8. Test Base Model of YOLOv8n  

Compared to the validation stage, the overall Precision slightly improved from 0.868 to 0.879, 
suggesting that the model produced fewer false positives on the larger test set. However, overall Recall dropped 

from 0.867 to 0.82, indicating a slight decline in the model’s ability to detect all true defect instances. Similarly, 

mAP50 decreased from 0.888 to 0.854, and mAP50-95 fell from 0.533 to 0.508, highlighting a modest decline 

in both standard and stringent localization accuracy. 

At the class level, Defect 1 and Defect 2 maintained high performance, with near-perfect Recall and 

mAP50 scores consistent across both validation and testing, confirming the model’s robustness in detecting 

these defect types. However, Defect 6 and Defect 8 continued to demonstrate limited performance, with 

mAP50-95 values of 0.273 and 0.283, respectively—consistent with their lower validation scores, which 

suggests persistent difficulty in detecting these classes due to complexity or visual ambiguity. 

Notably, Defect 4 showed improved performance, with Recall rising from 0.864 to 0.785 and mAP50 

increasing from 0.878 to 0.857. Although slight, this improvement may reflect better generalization on new 
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test data. However, Defect 9 exhibited a drop in both Precision and Recall, leading to decreased mAP50 and 

mAP50-95 values, indicating increased misclassifications in this category. 

In summary, the YOLOv8n model maintained strong performance in key classes but experienced 

slight degradation in overall Recall and localization precision during testing. These findings emphasize the 

importance of evaluating model robustness across larger and more diverse datasets to uncover detection 

weaknesses and guide future optimization. 
Figure 9 and Figure 10 shows the defect detection results obtained from the proposed model compared 

to the original labeled data. These visualizations demonstrate the model’s capability in accurately identifying 

and localizing various defect types on batik fabric samples. The predicted bounding boxes and confidence 

scores are presented alongside the ground truth annotations for direct comparison. 

 
Figure 9. Predicted Defect by The YOLOv8n 

 
Figure 10. Truth Defect Labeling on Batik Fabric 

As shown in Figure 9, the model successfully detected multiple defect instances with varying 

confidence levels, demonstrating its ability to handle different defect classes and complexities. The predicted 

bounding boxes closely align with the ground truth labels displayed in Figure 10, indicating reliable 

localization accuracy. Some minor discrepancies in bounding box size and positioning are observed, which 

may be attributed to the inherent variability in defect shapes and patterns. Overall, these qualitative results 
confirm that the model effectively generalizes to real batik fabric images and is capable of precise defect 

detection, supporting its practical application for automated quality control. 

3.5. Comparative Analysis of The Architecture 

To further evaluate the relative performance and efficiency of the two object detection models, 

YOLOv5n and YOLOv8n, a comparative analysis was conducted. This analysis focuses on three key aspects: 

the F1-score at the optimal confidence threshold, total computation time during training, and average inference 

time per image. These metrics are crucial for understanding not only the detection accuracy but also the 

practical deployment efficiency of each architecture in real-world scenarios. Furthermore, Figure 11 provides 

a visual comparison of the detection results between YOLOv5n and YOLOv8n, highlighting the qualitative 

differences in identifying defects across various test images. 

 
Figure 11. Visual Comparison of YOLOv5n vs YOLOv8n 

 Overall, YOLOv8n demonstrates better performance than YOLO5n, particularly in detecting more 

complex defect types. This is especially evident in the case of Defect 6, Defect 7, and Defect 8, where 

YOLOv5n consistenly struggles to accurately identify these classes. The challenges faced by YOLOv5n in 

detecting these defects suggest limitations in capturing the subtle or irregular patterns associated with them. In 

contrast, YOLOv8n shows a higher detection capability and robustness, making it more effective for real-world 

deployment where precision in identifying diverse defect types is crucial. Table 1 summarizes the results of 

this architectural comparison. 
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Table 1. The Results of This Architectural Comparison 

Architecture F1 Computation Time Inference 

YOLOv5n 0.86 (Confidence 0.46) 0.868 hours 9.7 ms/images 

YOLOv8n 0.87 (Confidence 0.297) 0.320 hours 2.9 ms/images 

The results clearly show that YOLOv8n outperforms YOLOv5n in terms of both computational 

efficiency and detection performance. YOLOv8n achieved a slightly higher F1-score of 0.87 compared to 0.86 

for YOLOv5n, indicating a marginal improvement in the balance between precision and recall. More 

significantly, YOLOv8n required substantially less training time—only 0.320 hours versus 0.868 hours for 

YOLOv5n—demonstrating better optimization and convergence speed. 
Additionally, the inference time per image for YOLOv8n was approximately three times faster (2.9 

ms/image) than YOLOv5n (9.7 ms/image). It is important to note that the inference time reported in Table 1 

reflects the total end-to-end processing time per image, which includes the cumulative duration of 

preprocessing, forward inference, loss calculation, and postprocessing. This considerable reduction in inference 

time makes YOLOv8n more suitable for real-time applications and deployment on devices with limited 

computational resources. 

However, despite these clear advantages, it is important to acknowledge potential limitations of 

YOLOv8n. For instance, the model may still struggle in scenarios involving extreme occlusion, highly cluttered 

backgrounds, or defect types with very subtle visual cues, where the model’s feature extraction capability might 

be insufficient for precise localization. Additionally, as a lightweight variant, YOLOv8n may exhibit reduced 

robustness compared to larger models when generalized across vastly different fabric textures or unseen defect 
types. Therefore, while YOLOv8n offers superior speed and comparable accuracy, careful consideration should 

be given to the complexity of the visual domain and defect characteristic when deploying the model in 

production environments.  

In summary, YOLOv8n provides improved detection speed and efficiency while maintaining 

comparable or slightly better detection accuracy, making it a more favorable architecture for small object 

detection in time-sensitive environments. 

4. CONCLUSION 

This study aimed to evaluate and compare the performance of YOLOv5n and YOLOv8n architectures 

for small object detection tasks, particularly in terms of detection accuracy, computational efficiency, and 

suitability for real-time applications. Based on a comprehensive series of validation and testing procedures, the 

findings clearly indicate that YOLOv8n offers superior performance over YOLOv5n across multiple metrics. 
YOLOv8n achieved a higher average F1-score of 0.87 at an optimal confidence threshold of 0.297, 

compared to 0.86 for YOLOv5n at a threshold of 0.46. More significantly, YOLOv8n demonstrated remarkable 

efficiency with a training time of only 0.320 hours, which is more than twice as fast as YOLOv5n (0.868 

hours). Furthermore, the model’s inference time per image was approximately three times faster, recorded at 

2.9 ms/image compared to 9.7 ms/image for YOLOv5n. These results confirm that YOLOv8n is better 

optimized for both speed and accuracy. 

From the parameter analysis, YOLOv8n consistently outperformed YOLOv5n in detection tasks 

across various defect classes, particularly in challenging or time-sensitive scenarios. While both models 

showed strong detection capability in certain classes, YOLOv8n offered more balanced and reliable 

performance across broader testing conditions. YOLOv8n is a more effective and efficient model for small 

object detection and is particularly well-suited for real-time detection applications, where high speed and low 

latency are essential. These results support the adoption of YOLOv8n in practical deployments that require fast 
and accurate visual analysis, such as industrial inspection, autonomous systems, and embedded devices. 

In the context of the batik industry, these findings support real-time quality control improvements, 

potentially reducing defects and increasing productivity. Moreover, the benefits of this approach may extend 

to other sectors that require fine-grained defect detection, such as textile manufacturing, electronics inspection, 

and precision engineering. For future work, further optimizations of the YOLOv8n model can be explored, 

including lightweight architectural modifications or quantization for deployment on edge devices. 

Additionally, investigating alternative model architectures that may offer even better trade-offs between speed, 

accuracy, and resource efficiency would be a promising direction.  
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