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ABSTRACT  

Floods and abrasion are the most common disasters in Indonesia. A lot of data is collected from post-flood and abrasion 

disasters. From the data released by BNPB, disaster data is directly based on the occurrence of disasters. From these data, 
we will test predictive modeling classification with a deep learning approach. Big data can be made through classification 

and predictive modeling. Our proposed model is a classification of predictive modeling of post-flood and abrasion data 

using the H2O deep learning approach. Deep learning H2O models can also be evaluated with specific model metrics, 

termination metrics, and performance charts. This approach is used to optimize the performance and accuracy of 
predictions during the modeling process using our dataset pool training. The big data to be processed will generate new 

knowledge for policies in decision-making. Big data performance modeled with Deep Learning H2O is used to predict 

the Survival attributes of post-flood and abrasion sample datasets. The best metric performance is obtained from the 

maxout activation function with a 200-200 unit layer that gets an accuracy of 93.49% with AUC: 0.808 +/- 0.022 (micro 
average: 0.808). 
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1. INTRODUCTION 

Disasters can occur directly and suddenly or case slowly[1]. Disasters that case can cause damage and 

fatalities[2]. Disasters have types and characteristics[3], [4]. Disaster characteristics can be classified and 

predicted according to the level of risk[5]. From the data released by the National Disaster Management 

Agency (BNPB) in Indonesia Floods are the most frequent disaster events in Indonesia the data can be views 

on the official BNPB website page. Post-flood impacts can cause a lot of damage[6]. The most common result 

of post-flood is damage to the facilities or residences of the population[7]–[10]. Seawater that exceeds normal 

limits can cause damage at sea and on land. If there is a tidal wave in the sea, it can cause a sweep of the seaside 

area or called abrasion[11]. Abrasion causes some areas eroded by seawater to disappear[12]. The loss of 

coastal suburbs due to abrasion due to tidal waves has an impact on damage to facilities, homes, and community 

businesses in the area. As the largest archipelago, Indonesia is vulnerable to floods and abrasion disasters[13]–

[15]. Flooding and abrasion are generally triggered by high rainfall, given changes in rainfall patterns[16]. The 

data released directly by BNPB is based on disaster events that occurred in disaster-affected areas. Big data 

can be created to test Predictive Modeling of Post-Flood and Abrasion Effects. As a result of the disaster, many 

fatalities and damage were caused. Victims are categorized as dead, missing, injured, suffering, and displaced. 

https://creativecommons.org/licenses/by-sa/4.0/
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Damage data is categorized into two, namely houses with heavy damage, moderately damaged, lightly 

damaged, and submerged houses. and damaged facilities such as Education, Health, bridges, worship, and 

offices[14]. This post-flood and abrasion impact data can be analyzed to model to provide meaningful 

information to support flood and abrasion mitigation and management decisions[9], [18]. Post-flood and 

abrasion data have irregular patterns but it is likely that the data that appears often occurs.  

In recent years, machine learning has been combined and applied in many flood-related dataset 

studies.[16], [18]–[20]. Machine learning uses computational algorithms to evaluate information and develop 

predictions with big data.[20]. This approach to using machine learning is deep learning which is very useful 

in a rare area of data.[19].  

From Indonesia's geoportal disaster data there is no model for analyzing big data due to post-flood 

and abrasion. Data that is available in real-time if not reprocessed then only limited to information. The data 

presented if only information then cannot help in decision making. If the performance of the data is not 

validated then the data is not known the performance of the data and the performance data. Deep learning is 

more often used for image analysis, can post-flood and abrasion data be used to measure predictive modeling 

classification modeling performance with H2O deep learning. 

The analysis uses deep learning modeling for predictive modeling classification[18], [21], [22]. The 

approach used for data due to post-flood and abrasion is with H2O deep learning to perform classification[19], 

[20] . Big data is trained using role sets from the Predictive Modeling Classification process[18]. Many 

different parameters can be given to H2O deep learning methods. The performance of learning model results 

data is divided into training and testing through cross-validation. Cross-validation makes it possible to estimate 

model performance more accurately and reliably[24]. The data is used in real-time following the occurrence of 

flood disasters and abrasion from geoportal data disaster data. The data to be tested into the H2O deep learning 

model goes through the modeling and data testing training procedures. During further model creation, explore 

the various core components and functions of H2O[25]. 

Deep learning H2O models can also be evaluated with specific model metrics, termination metrics, 

and performance charts[26]. Deep learning H2O models can also be evaluated with specific model metrics, 

termination metrics, and performance charts.[27].  

Deep learning can identify irregular patterns[28]. Post-flood and abrasion data have irregular patterns 

because data is obtained from direct events per day. But it could be that data cannot be collected per day 

because there is no disaster. Models for analyzing big data due to post-flood and abrasion with deep learning 

H2O are used for big data efficiency[29], [30]. Data available in real-time retrieved for reprocessing is not just 

limited to information. The big data to be processed will generate new knowledge for policies in decision 

making. Big data performance modeled with Deep Learning H2O is used to predict the Survival attributes of 

post-flood and abrasion sample datasets.  

This research is important because it can provide an overview of the classification of predictive 

modeling of post-flood data. The data tested using this deep learning method becomes new knowledge in 

machine learning. The model we propose is a predictive modeling classification of post-flood and abrasion 

data using the H2O deep learning approach. This approach is used to optimize prediction performance and 

accuracy during the modeling process using our dataset training. We compared the proposed new deep learning 

outcomes with other computational benchmark models. 

 

2. RESEARCH METHOD 

The methodological steps are as follows in figure 1. In conducting a deep learning approach to 

Predictive Modeling Classification the first step using data that has been cleaned up. Then the data is per the 

role set. The next step is the stage of cross-validation performance of a learning model resultant data is split 

into training and testing. Furthermore, in the training process using H2O Deep Learning operators profit apply 

the model. In the testing process, a trained model has been applied to labeled data. The final stage is the result 

of the performance binominal classification, namely the accuracy of the model compute model assessed. 
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Figure 1. Process flow diagram of the proposed work 

2.1. Data Collection 

The data collection is data from the official website of the National Disaster Management 

Agency(BNPB), geoportal Indonesian disaster data on the https://gis.bnpb.go.id/ page. The data taken as test 

data is data from 2018 to 2021 of the types of flood and abrasion disaster events. The total duration of 1460 

days of data is an example set of 5423 examples. Attribute meta data information used can be seen in the table 

below. 
Table 1. Attribute meta data information 

Attribute Type data 

Date of event Date 

Types of disaster events Binominal 

Regency Polyniminal 

Province Integer 

Die Integer 

Disappear Integer 

Injured Integer 

Broken House Integer 

Submerged House Integer 

 

2.2. Set Role 

The set role attribute role describes how other Operators handle Attributes in the data. Other Roles are 

classified as special. An ExampleSet can have many special Attributes, but each custom role can only appear 

once. If a special role is assigned to more than one Attribute, all roles will be changed to regular except for the 

last Attribute. Role Sets are used to change the roles of one or more Attributes. The parameter used is the name 

of the attribute whose role must be changed then the range target_peran. The target role of the selected Attribute 

is the new role assigned to it[25].  

2.3. Overview Deep Learning Algorithm 

Deep learning is a subfield of machine learning that is part of artificial intelligence.[31]. Deep learning 

consists of several artificial neural networks that are interconnected[26], [30]. Deep Learning classification or 

regression model delivered from the output port[30], [31]. This regression classification or model can be 

applied to invisible data sets for label attribute prediction[22]. In its application, deep learning can identify 

irregular patterns or not follow the predicted behavior. Anomalies can be interpreted as unnatural behavior or 

patterns and can be a sign of errors in the system.[22]. In this case, deep learning can be relied on to measure 

the performance of irregular data patterns.[27], [32]. Model Deep Learning H2O can be used to perform guided 

classification and regression[22]. 

 
Figure 2. The basic unit in the model 

https://gis.bnpb.go.id/
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Tanh Activation functions. In the model, the weighted combination of input signals is aggregated, and 

then an output signal f(α) is transmitted by the connected neuron. The function f represents the nonlinear 

activation function used throughout the network, and the bias b accounts for the neuron’s activation 

threshold[26]. 

 

𝛼 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1  (1) 

 

Deep learning is based on a multi-layer feed-forward artificial neural network consisting of a layer 

consisting of many layers of interconnected neuronal units, starting with the input layer to match the feature 

space, then continuing with several nonlinear layers, and ending with a linear regression or classification layer 

to fit the output space[20]. The input and output of the model unit follow the basic logic of a single neuron 

described above. Bias units are included in each non-output layer of the network. The weight that connects 

neurons and biases with other neurons fully determines the output of the entire network, and learning occurs 

when these weights are adjusted to minimize errors in labeled training data. More specifically, for each example 

of j training, the goal is to minimize the function of loss[33]. 

2.4. Activation Function 

Activation function provides output based on the input signal. The network of deep learning algorithm 

architectures can contain a large number of hidden layers. These layers consist of neurons with activation 

functions. There are several activation functions used such as ReLU, Maxout, and Tanh functions[27], [30]. 

The Rectified linear activation function or ReLU for short is a linear function of pieces that will output 

inputs directly if positive, otherwise, will produce zero. Rectified Linear implements the following functions: 

 

𝑓(α)  = max (0, α) (2) 

 

The Maxout activation function can be interpreted as creating a linear approximation of pieces to an 

arbitrary convex function. Maxout unit implements the following functions: 

 

𝑓(·)  =  max(𝑤𝑖𝑥𝑖  + 𝑏), rescale if max 𝑓(·) ≥ 1 (3) 

 

The activation function of hyperbolic tangents is also referred to simply as Tanh. This function takes 

any real value as input and output values in the range of -1 to 1. The larger the input, the closer the output value 

will be to 1.0, while the smaller the input, the closer the output will be to -1.0. Tanh implements the following 

functions: 

 

𝑓(𝛼) =
𝑒𝛼−𝑒−𝛼

𝑒𝛼+𝑒−𝛼 (4) 

 

2.5. Loss Function 

This experiment uses the loss function cross entropy which is a typical use classification. The 

following choices for the loss function L(W, B | j). The system default enforces typical use rules based on 

whether regression or classification is being performed. Note here that t (j) and o(j) are the predicted (target) 

output and actual output, respectively, for training example j; further, let y denote the output units and 0 the 

output layer[34]–[36]. 

L(W, B | j)  = − ∑ (ln(0𝑦
(𝑗)

) . 𝑡𝑦
(𝑗)

+ 𝑙𝑛(1 − 0𝑦
(𝑗)

). (1 − 𝑡𝑦
(𝑗)

))𝑦𝜖0  (5) 

 

2.6. Bernoulli Distribution 

Discrete probability distributions are used in machine learning, especially in modeling binary and 

multi-class classification issues, but also in evaluating performance for binary classification models, such as 

trust interval calculations, and in modeling the distribution of words in a text[37], [38]. The Bernoulli 

distribution uses binary random variables. Distribution function for training data[39]. Some further tuning 

functions can be achieved through expert parameters[40]. Bernoulli distribution can be used for binominal atau 

2-class polynominal labels. 

X ~ Bernoulli (p) (6) 
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The cumulative distribution function is: 

F(𝑥) = {
0 𝑥 < 0

1 − 𝑝 0 ≤ 𝑥 < 1,
1 𝑥 ≥ 1

  (7) 

 

3. RESULTS AND DISCUSSION  

The resulting process uses standard rules of modeling parameters from the H2O deep learning 

approach. in the Performance of a learning model of the data training process compares the performance of the 

activation functions of ReLU, Maxout, and Tanh. Hiden layer units are trained to start from 50, 100, and 200 

hidden layers. A small part of the input of each hidden layer will be omitted from the training to improve 

generalizations. Epoch 10.0, for train sample per-interation, starting from -2. Epsilon 1.0e-8, similar to learning 

rate during initial training and momentum at a later stage that allows forward. Almost the same as momentum 

and relates to memory in weight intermingling, the typical value of rho is between 0.99 and 0.999. The L1 has 

a value of 1.0E-5 regulatory methods that can limit the absolute value of the weight and has the net effect of 

setting to zero the model to reduce complexity and avoid overfitting. L2 is a regulatory method that limits the 

amount of squared weight. This method introduces bias into parameter estimation. Max w2 is the maximum 

amount of weight entered squared into a neuron that is given a value of 10.0. The loss function serves to be 

minimized by the model, in this training the model consists of independent hypotheses so we use cross entropy 

only. The distribution of functions for training data uses Bernoulli because the data has a 2 class label. The 

metric results reported on the binomial complete training model frame metric type. It can be seen in the results 

of table 1 that the unit layer 200-200 has better performance. 

 
Table 2. Reported on full training frame 

Activation  Layer 

Units  

MSE RMSE R^2 AUC Pr_auc Log Loss Mean per 

class error 

Default  

threshold 

ReLU 200 0.029749 0.172481 0.197128 0.862796 0.358086 0.134157 0.286818 0.220939 

Tanh 200 0.031477 0.177419 0.150498 0.903135 0.296896 0.118166 0.244644 0.096136 

Maxout 200 0.030279 0.174009 0.182839 0.919249 0.392624 0.118398 0.241480 0.065915 

ReLU 

Tanh 

Maxout 

ReLU 

Tanh 

Maxout 

100 

100 

100 

50 

50 

50 

0.029385 

0.031036 

0.029322 

0.030575 

0.036628 

0.030656 

0.171422 

0.176172 

0.171239 

0.174858 

0.191385 

0.175091 

0.206953 

0.162401 

0.208651 

0.174849 

0.011488 

0.172646 

0.917704 

0.913704 

0.926698 

0.857628 

0.743031 

0.898218 

0.369568 

0.309998 

0.363578 

0.328813 

0.161231 

0.331372 

0.109243 

0.112730 

0.105916 

0.136700 

0.165262 

0.120846 

0.230094 

0.258706 

0.255925 

0.272954 

0.354233 

0.286733 

0.137782 

0.173461 

0.155138 

0.130298 

0.031157 

0.144114 

 

The status of the Neuron Layer can be seen in the table below. The results of predicting types of 

disasters, 2-class classification, the results in these tables are the best results from the activation function in the 

training. We tested hidden layer layers ranging from 50, 100, and 200. Bernoulli distribution is used for discrete 

probability distributions where Bernoulli's random variable can only have 0 or 1 as a result. Bernoulli's 

distribution matches the conditions of the data in the training. CrossEntropy loss is used to optimize 

classification models. Cross-Entropy understanding on understanding Softmax activation function. Softmax 

converts logs into probabilities aimed at making the model output as close to the desired output as possible. 

Here are the results of the status of the neuron layer of units 200-200 with reLU, tanh, and maxout activation 

functions that have better performance and performance than other layer units 

Table 3. Status of Neuron Layers Relu activation function 

Layer  Units  Lift  

Cumulative 

Mean Rate Rate RMS Weight Weight 

RMS 

Bias Bias 

RMS 

1 519 Input       

2 200 Relu 0.158634  0.273293 0.001037 0.054106  -0.061495  0.106414 

3 200 Relu 0.224868  0.309316  -0.002743  0.059619  0.730693  0.341669 

4 2 Softmax 0.068742 0.212369 -0.007770  0.205507  0.001542  0.000883 

 

 
Table 4. Status of Neuron Layers Tanh activation function 

Layer  Units  Lift  

Cumulative 

Mean Rate Rate RMS Weight Weight 

RMS 

Bias Bias 

RMS 

1 519 Input       

2 200 Tanh 0.111265  0.185469 0.000142 0.054190  0.004304  0.037411 

3 200 Tanh 0.472069  0.437979  -0.000042  0.048406  0.001674  0.034231 

4 2 Softmax 0.271041 0.271041 -0.015211  0.180501  -0.000168  0.110938 
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Table 5. Status of Neuron Layers Maxout activation function 

Layer  Units  Lift  

Cumulative 

Mean Rate Rate RMS Weight Weight 

RMS 

Bias Bias 

RMS 

1 519 Input       

2 200 Maxout 0.215083  0.350278 0.001268 0.054008  0.029617  0.120012 

3 200 Maxout 0.263552  0.313712  -0.005478  0.058934  0.898479  0.150922 

4 2 Softmax 0.002412 0.001650 -0.017639  0.202034  -0.000353  0.000193 

         

 

From the results of the training scoring history with layers, 200-200 has a longer duration and training 

speed than other unit layers. The following table is the result of a scoring history of the best training 

performance. 
Table 6. History Scoring with ReLU activation function 

Duration  Training Speed Epochs Iterations Samples 

Training 

RMSE 

Training 

LogLoss Training 

Classifications 

error 

5.122 sec 1333 obs/sec  1.00000 1 5423 0.19353 0.18116 0.06085 

14.906 sec 1641 obs/sec  4.00000 4 21692 0.18155 0.13834 0.06196 

23.793 sec 

28.461 sec 

1773 obs/sec  

2122 obs/sec  

7.00000 

10.00000 

7 

10 

37961 

54230 

0.17829 

0.17248 

0.14370 

0.13416 

0.05680 

0.04370 

 

 
Table 7. History Scoring with Tanh activation function 

Duration  Training Speed Epochs Iterations Samples 

Training 

RMSE 

Training 

LogLoss Training 

Classifications 

error 

2.121 sec 2381 obs/sec  0.65554 1 3555 0.18855 0.14689 0.07929 

7.609 sec 2206 obs/sec  2.59174 4 14055 0.18067 0.12866 0.07026 

13.985 sec 

21.680 sec 

27.614 sec 

31.482 sec 

32.019 sec 

2057 obs/sec  

2019 obs/sec 

2006 obs/sec 

2013 obs/sec 

2011 obs/sec  

4.54507 

7.12945 

9.05292 

10.34354 

10.34354 

7 

11 

14 

16 

16 

24648 

38663 

49094 

56093 

56093 

0.17742 

0.17893 

0.20371 

0.18842 

0.17742 

0.11817 

0.12072 

0.15058 

0.14681 

0.11817 

0.06417 

0.05956 

0.04739 

0.05255 

0.06417 

 

 
Table 8. History Scoring with Maxout activation function 

Duration  Training Speed Epochs Iterations Samples 

Training 

RMSE 

Training 

LogLoss Training 

Classifications 

error 

2.248 sec 1117 obs/sec  0.18274 1 991 0.19610 0.23948 0.13351 

16.059 sec 1122 obs/sec  2.69039 15 14590 0.18748 0.16351 0.05053 

33.489 sec 

50.688 sec 

52.591 sec 

1230 obs/sec  

1223 obs/sec 

1219 obs/sec 

6.51079 

10.08427 

10.08427 

36 

56 

56 

35308 

54687 

54687 

0.17401 

0.17484 

0.17401 

0.11840 

0.12111 

0.11840 

0.05809 

0.04204 

0.05809 

 

 

The ROC curve is a graph that shows the performance of the classification model at all classification 

thresholds. This curve plots two parameters of the true positive level and the false positive level. While the 

AUC serves to measure the entire two-dimensional area under the entire ROC curve. The following is a look 

at the results of the AUC from the training that has been tested. 



TIERS Information Technology Journal   

 

Predictive Modeling Classification… (Finki Dona Marleny) 

7 

 

Figure 3. AUC: 0.808 +/- 0.022 (micro average: 0.808) 

The image above is the best AUC result of each layer unit trained. Figure 3 describes the best 

performance and performance of layer units 200-200 AUC charts. 

 

Figure 4. AUC: 0.779 +/- 0.040 (micro average: 0.779) 

Figure 4 describes the performance and performance of the use of Activation ReLU with layer units 

100-100. 
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Figure 5. AUC: 0.786 +/- 0.044 (micro average: 0.786) 

Last in figure (c) is layer units 50-50 AUC charts with maxout activation function.  

4. CONCLUSION 

The resulting model is the classification of predictive modeling of post-flood and abrasion data using 

the H2O deep learning approach testing training and testing data with different activation functions and varying 

unit layers get the result that by using the maxout activation function get an accuracy of 93.49% with AUC: 

0.808 +/- 0.022 (micro average: 0.808). Unit layers tested 200-200 with large layers have the disadvantage of 

Assessment History with a longer duration compared to using unit layers 50-50. This approach is used to 

optimize the performance and accuracy of predictions during the modeling process using our dataset pool 

training. We compared the proposed new deep learning results with other computational benchmark models of 

the activation function and obtained no better performance than maxout and ReLU activation functions. Layer 

50-50 obtained good performance results with the use of the maxout activation function. Likewise, layer 100-

100 gets good performance by using the ReLU activation function. In the case of our data, the use of maxout 

activation has better performance and performance compared to other model uses. The advice for other 

researchers is to be able to add more data so that when cross-validating it can be more optimal and have better 

performance and performance in the future. 
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