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ABSTRACT

Floods and abrasion are the most common disasters in Indonesia. A lot of data is collected from post-flood and abrasion
disasters. From the data released by BNPB, disaster data is directly based on the occurrence of disasters. From these data,
we will test predictive modeling classification with a deep learning approach. Big data can be made through classification
and predictive modeling. Our proposed model is a classification of predictive modeling of post-flood and abrasion data
using the H20 deep learning approach. Deep learning H20 models can also be evaluated with specific model metrics,
termination metrics, and performance charts. This approach is used to optimize the performance and accuracy of
predictions during the modeling process using our dataset pool training. The big data to be processed will generate new
knowledge for policies in decision-making. Big data performance modeled with Deep Learning H20 is used to predict
the Survival attributes of post-flood and abrasion sample datasets. The best metric performance is obtained from the
maxout activation function with a 200-200 unit layer that gets an accuracy of 93.49% with AUC: 0.808 +/- 0.022 (micro
average: 0.808).
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1. INTRODUCTION

Disasters can occur directly and suddenly or case slowly[1]. Disasters that case can cause damage and
fatalities[2]. Disasters have types and characteristics[3], [4]. Disaster characteristics can be classified and
predicted according to the level of risk[5]. From the data released by the National Disaster Management
Agency (BNPB) in Indonesia Floods are the most frequent disaster events in Indonesia the data can be views
on the official BNPB website page. Post-flood impacts can cause a lot of damage[6]. The most common result
of post-flood is damage to the facilities or residences of the population[7]-[10]. Seawater that exceeds normal
limits can cause damage at sea and on land. If there is a tidal wave in the sea, it can cause a sweep of the seaside
area or called abrasion[11]. Abrasion causes some areas eroded by seawater to disappear[12]. The loss of
coastal suburbs due to abrasion due to tidal waves has an impact on damage to facilities, homes, and community
businesses in the area. As the largest archipelago, Indonesia is vulnerable to floods and abrasion disasters[13]-
[15]. Flooding and abrasion are generally triggered by high rainfall, given changes in rainfall patterns[16]. The
data released directly by BNPB is based on disaster events that occurred in disaster-affected areas. Big data
can be created to test Predictive Modeling of Post-Flood and Abrasion Effects. As a result of the disaster, many
fatalities and damage were caused. Victims are categorized as dead, missing, injured, suffering, and displaced.

Journal homepage: https://journal.undiknas.ac.id/index.php/tiers


https://creativecommons.org/licenses/by-sa/4.0/

2 ISSN: 2723-4533 / E-ISSN: 2723-4541

Damage data is categorized into two, namely houses with heavy damage, moderately damaged, lightly
damaged, and submerged houses. and damaged facilities such as Education, Health, bridges, worship, and
offices[14]. This post-flood and abrasion impact data can be analyzed to model to provide meaningful
information to support flood and abrasion mitigation and management decisions[9], [18]. Post-flood and
abrasion data have irregular patterns but it is likely that the data that appears often occurs.

In recent years, machine learning has been combined and applied in many flood-related dataset
studies.[16], [18]-[20]. Machine learning uses computational algorithms to evaluate information and develop
predictions with big data.[20]. This approach to using machine learning is deep learning which is very useful
in a rare area of data.[19].

From Indonesia's geoportal disaster data there is no model for analyzing big data due to post-flood
and abrasion. Data that is available in real-time if not reprocessed then only limited to information. The data
presented if only information then cannot help in decision making. If the performance of the data is not
validated then the data is not known the performance of the data and the performance data. Deep learning is
more often used for image analysis, can post-flood and abrasion data be used to measure predictive modeling
classification modeling performance with H20 deep learning.

The analysis uses deep learning modeling for predictive modeling classification[18], [21], [22]. The
approach used for data due to post-flood and abrasion is with H20 deep learning to perform classification[19],
[20] . Big data is trained using role sets from the Predictive Modeling Classification process[18]. Many
different parameters can be given to H20 deep learning methods. The performance of learning model results
data is divided into training and testing through cross-validation. Cross-validation makes it possible to estimate
model performance more accurately and reliably[24]. The data is used in real-time following the occurrence of
flood disasters and abrasion from geoportal data disaster data. The data to be tested into the H20O deep learning
model goes through the modeling and data testing training procedures. During further model creation, explore
the various core components and functions of H20[25].

Deep learning H20 models can also be evaluated with specific model metrics, termination metrics,
and performance charts[26]. Deep learning H20 models can also be evaluated with specific model metrics,
termination metrics, and performance charts.[27].

Deep learning can identify irregular patterns[28]. Post-flood and abrasion data have irregular patterns
because data is obtained from direct events per day. But it could be that data cannot be collected per day
because there is no disaster. Models for analyzing big data due to post-flood and abrasion with deep learning
H20 are used for big data efficiency[29], [30]. Data available in real-time retrieved for reprocessing is not just
limited to information. The big data to be processed will generate new knowledge for policies in decision
making. Big data performance modeled with Deep Learning H20 is used to predict the Survival attributes of
post-flood and abrasion sample datasets.

This research is important because it can provide an overview of the classification of predictive
modeling of post-flood data. The data tested using this deep learning method becomes new knowledge in
machine learning. The model we propose is a predictive modeling classification of post-flood and abrasion
data using the H20 deep learning approach. This approach is used to optimize prediction performance and
accuracy during the modeling process using our dataset training. We compared the proposed new deep learning
outcomes with other computational benchmark models.

2. RESEARCH METHOD

The methodological steps are as follows in figure 1. In conducting a deep learning approach to
Predictive Modeling Classification the first step using data that has been cleaned up. Then the data is per the
role set. The next step is the stage of cross-validation performance of a learning model resultant data is split
into training and testing. Furthermore, in the training process using H20 Deep Learning operators profit apply
the model. In the testing process, a trained model has been applied to labeled data. The final stage is the result
of the performance binominal classification, namely the accuracy of the model compute model assessed.
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Figure 1. Process flow diagram of the proposed work

2.1. Data Collection

The data collection is data from the official website of the National Disaster Management
Agency(BNPB), geoportal Indonesian disaster data on the https://gis.bnpb.go.id/ page. The data taken as test
data is data from 2018 to 2021 of the types of flood and abrasion disaster events. The total duration of 1460
days of data is an example set of 5423 examples. Attribute meta data information used can be seen in the table
below.

Table 1. Attribute meta data information

Attribute Type data
Date of event Date
Types of disaster events Binominal
Regency Polyniminal
Province Integer
Die Integer
Disappear Integer
Injured Integer
Broken House Integer
Submerged House Integer

2.2. Set Role

The set role attribute role describes how other Operators handle Attributes in the data. Other Roles are
classified as special. An ExampleSet can have many special Attributes, but each custom role can only appear
once. If a special role is assigned to more than one Attribute, all roles will be changed to regular except for the
last Attribute. Role Sets are used to change the roles of one or more Attributes. The parameter used is the name
of the attribute whose role must be changed then the range target_peran. The target role of the selected Attribute
is the new role assigned to it[25].

2.3. Overview Deep Learning Algorithm

Deep learning is a subfield of machine learning that is part of artificial intelligence.[31]. Deep learning
consists of several artificial neural networks that are interconnected[26], [30]. Deep Learning classification or
regression model delivered from the output port[30], [31]. This regression classification or model can be
applied to invisible data sets for label attribute prediction[22]. In its application, deep learning can identify
irregular patterns or not follow the predicted behavior. Anomalies can be interpreted as unnatural behavior or
patterns and can be a sign of errors in the system.[22]. In this case, deep learning can be relied on to measure
the performance of irregular data patterns.[27], [32]. Model Deep Learning H20 can be used to perform guided
classification and regression[22].
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Figure 2. The basic unit in the model
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Tanh Activation functions. In the model, the weighted combination of input signals is aggregated, and
then an output signal f(a) is transmitted by the connected neuron. The function f represents the nonlinear
activation function used throughout the network, and the bias b accounts for the neuron’s activation
threshold[26].

a=Yr,wx;+b Q)

Deep learning is based on a multi-layer feed-forward artificial neural network consisting of a layer
consisting of many layers of interconnected neuronal units, starting with the input layer to match the feature
space, then continuing with several nonlinear layers, and ending with a linear regression or classification layer
to fit the output space[20]. The input and output of the model unit follow the basic logic of a single neuron
described above. Bias units are included in each non-output layer of the network. The weight that connects
neurons and biases with other neurons fully determines the output of the entire network, and learning occurs
when these weights are adjusted to minimize errors in labeled training data. More specifically, for each example
of j training, the goal is to minimize the function of loss[33].

2.4. Activation Function

Activation function provides output based on the input signal. The network of deep learning algorithm
architectures can contain a large number of hidden layers. These layers consist of neurons with activation
functions. There are several activation functions used such as ReLU, Maxout, and Tanh functions[27], [30].

The Rectified linear activation function or ReL U for short is a linear function of pieces that will output
inputs directly if positive, otherwise, will produce zero. Rectified Linear implements the following functions:

f(a@) = max(0,a) (2)

The Maxout activation function can be interpreted as creating a linear approximation of pieces to an
arbitrary convex function. Maxout unit implements the following functions:

f() = max(w;x; + b),rescale if max f(-) > 1 3)

The activation function of hyperbolic tangents is also referred to simply as Tanh. This function takes
any real value as input and output values in the range of -1 to 1. The larger the input, the closer the output value
will be to 1.0, while the smaller the input, the closer the output will be to -1.0. Tanh implements the following
functions:

a

f(a) _ e%—e”

e%+e~@

(4)

2.5. Loss Function

This experiment uses the loss function cross entropy which is a typical use classification. The
following choices for the loss function L(W, B | j). The system default enforces typical use rules based on
whether regression or classification is being performed. Note here that t (j) and o(j) are the predicted (target)
output and actual output, respectively, for training example j; further, let y denote the output units and 0 the
output layer[34]-[36].

L(W,B 1) = —X,e(n(05).tY + in(1 - 09). 1 - t")) (5)

2.6. Bernoulli Distribution

Discrete probability distributions are used in machine learning, especially in modeling binary and
multi-class classification issues, but also in evaluating performance for binary classification models, such as
trust interval calculations, and in modeling the distribution of words in a text[37], [38]. The Bernoulli
distribution uses binary random variables. Distribution function for training data[39]. Some further tuning
functions can be achieved through expert parameters[40]. Bernoulli distribution can be used for binominal atau
2-class polynominal labels.

X ~ Bernoulli (p) (6)
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The cumulative distribution function is:
0x<O

Fx)={1—-p0<x<1, (7)
1x>1

3. RESULTS AND DISCUSSION

The resulting process uses standard rules of modeling parameters from the H2O deep learning
approach. in the Performance of a learning model of the data training process compares the performance of the
activation functions of ReLU, Maxout, and Tanh. Hiden layer units are trained to start from 50, 100, and 200
hidden layers. A small part of the input of each hidden layer will be omitted from the training to improve
generalizations. Epoch 10.0, for train sample per-interation, starting from -2. Epsilon 1.0e-8, similar to learning
rate during initial training and momentum at a later stage that allows forward. Almost the same as momentum
and relates to memory in weight intermingling, the typical value of rho is between 0.99 and 0.999. The L1 has
a value of 1.0E-5 regulatory methods that can limit the absolute value of the weight and has the net effect of
setting to zero the model to reduce complexity and avoid overfitting. L2 is a regulatory method that limits the
amount of squared weight. This method introduces bias into parameter estimation. Max w2 is the maximum
amount of weight entered squared into a neuron that is given a value of 10.0. The loss function serves to be
minimized by the model, in this training the model consists of independent hypotheses so we use cross entropy
only. The distribution of functions for training data uses Bernoulli because the data has a 2 class label. The
metric results reported on the binomial complete training model frame metric type. It can be seen in the results
of table 1 that the unit layer 200-200 has better performance.

Table 2. Reported on full training frame

Activation Layer MSE RMSE R"2 AUC Pr_auc Log Loss Mean per Default
Units class error  threshold
ReLU 200 0.029749 0.172481 0.197128 0.862796 0.358086 0.134157 0.286818 0.220939
Tanh 200 0.031477 0.177419 0.150498 0.903135 0.296896 0.118166 0.244644 0.096136
Maxout 200 0.030279 0.174009 0.182839 0.919249 0.392624 0.118398 0.241480 0.065915
ReLU 100  0.029385 0.171422 0.206953 0.917704 0.369568 0.109243 0.230094 0.137782
Tanh 100 0.031036 0.176172 0.162401 0.913704 0.309998 0.112730 0.258706 0.173461
Maxout 100  0.029322 0.171239 0.208651 0.926698 0.363578 0.105916 0.255925 0.155138
ReLU 50 0.030575 0.174858 0.174849 0.857628 0.328813 0.136700 0.272954 0.130298
Tanh 50 0.036628 0.191385 0.011488 0.743031 0.161231 0.165262 0.354233 0.031157
Maxout 50 0.030656 0.175091 0.172646 0.898218 0.331372 0.120846 0.286733 0.144114

The status of the Neuron Layer can be seen in the table below. The results of predicting types of
disasters, 2-class classification, the results in these tables are the best results from the activation function in the
training. We tested hidden layer layers ranging from 50, 100, and 200. Bernoulli distribution is used for discrete
probability distributions where Bernoulli's random variable can only have 0 or 1 as a result. Bernoulli's
distribution matches the conditions of the data in the training. CrossEntropy loss is used to optimize
classification models. Cross-Entropy understanding on understanding Softmax activation function. Softmax
converts logs into probabilities aimed at making the model output as close to the desired output as possible.
Here are the results of the status of the neuron layer of units 200-200 with reLU, tanh, and maxout activation
functions that have better performance and performance than other layer units

Table 3. Status of Neuron Layers Relu activation function

Layer Units Lift Mean Rate Rate RMS Weight Weight Bias Bias
Cumulative RMS RMS
1 519 Input
2 200 Relu 0.158634 0.273293 0.001037 0.054106 -0.061495 0.106414
3 200 Relu 0.224868 0.309316 -0.002743 0.059619 0.730693 0.341669
4 2 Softmax 0.068742 0.212369 -0.007770 0.205507 0.001542 0.000883

Table 4. Status of Neuron Layers Tanh activation function

Layer Units Lift Mean Rate Rate RMS Weight Weight Bias Bias
Cumulative RMS RMS
1 519 Input
2 200 Tanh 0.111265 0.185469 0.000142 0.054190 0.004304 0.037411
3 200 Tanh 0.472069 0.437979 -0.000042 0.048406 0.001674 0.034231
4 2 Softmax 0.271041 0.271041 -0.015211 0.180501 -0.000168 0.110938

Predictive Modeling Classification... (Finki Dona Marleny)
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Table 5. Status of Neuron Layers Maxout activation function

Layer Units Lift Mean Rate Rate RMS Weight Weight Bias Bias
Cumulative RMS RMS
1 519 Input
2 200 Maxout 0.215083 0.350278 0.001268 0.054008 0.029617 0.120012
3 200 Maxout 0.263552 0.313712 -0.005478 0.058934 0.898479 0.150922
4 2 Softmax 0.002412 0.001650 -0.017639 0.202034 -0.000353 0.000193

From the results of the training scoring history with layers, 200-200 has a longer duration and training
speed than other unit layers. The following table is the result of a scoring history of the best training

performance.
Table 6. History Scoring with ReLU activation function

Duration Training Speed Epochs Iterations Samples RMSE LogLoss Training
Training Training Classifications
error
5.122 sec 1333 obs/sec 1.00000 1 5423 0.19353 0.18116 0.06085
14.906 sec 1641 obs/sec 4.00000 4 21692 0.18155 0.13834 0.06196
23.793 sec 1773 obs/sec 7.00000 7 37961 0.17829 0.14370 0.05680
28.461 sec 2122 obs/sec 10.00000 10 54230 0.17248 0.13416 0.04370

Table 7. History Scoring with Tanh activation function

Duration Training Speed Epochs Iterations Samples RMSE LogLoss Training
Training Training Classifications
error
2.121 sec 2381 obs/sec 0.65554 1 3555 0.18855 0.14689 0.07929
7.609 sec 2206 obs/sec 2.59174 4 14055 0.18067  0.12866 0.07026
13.985 sec 2057 obs/sec 4.54507 7 24648 0.17742 0.11817 0.06417
21.680 sec 2019 obs/sec 7.12945 11 38663 0.17893 0.12072 0.05956
27.614 sec 2006 obs/sec 9.05292 14 49094 0.20371 0.15058 0.04739
31.482 sec 2013 obs/sec 10.34354 16 56093 0.18842 0.14681 0.05255
32.019 sec 2011 obs/sec 10.34354 16 56093 0.17742 0.11817 0.06417

Table 8. History Scoring with Maxout activation function

Duration Training Speed Epochs Iterations Samples RMSE LogLoss Training
Training Training Classifications
error
2.248 sec 1117 obs/sec 0.18274 1 991 0.19610 0.23948 0.13351
16.059 sec 1122 obs/sec 2.69039 15 14590 0.18748 0.16351 0.05053
33.489 sec 1230 obs/sec 6.51079 36 35308 0.17401 0.11840 0.05809
50.688 sec 1223 obs/sec 10.08427 56 54687 0.17484 0.12111 0.04204
52.591 sec 1219 obs/sec 10.08427 56 54687 0.17401 0.11840 0.05809

The ROC curve is a graph that shows the performance of the classification model at all classification
thresholds. This curve plots two parameters of the true positive level and the false positive level. While the
AUC serves to measure the entire two-dimensional area under the entire ROC curve. The following is a look
at the results of the AUC from the training that has been tested.

TIERS Information Technology Journal, Vol. 3, No. 1, June 2022:01-10



TIERS Information Technology Journal 7

Figure 3. AUC: 0.808 +/- 0.022 (micro average: 0.808)

The image above is the best AUC result of each layer unit trained. Figure 3 describes the best
performance and performance of layer units 200-200 AUC charts.

Figure 4. AUC: 0.779 +/- 0.040 (micro average: 0.779)

Figure 4 describes the performance and performance of the use of Activation ReLU with layer units
100-100.

Predictive Modeling Classification... (Finki Dona Marleny)
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Figure 5. AUC: 0.786 +/- 0.044 (micro average: 0.786)

Last in figure (c) is layer units 50-50 AUC charts with maxout activation function.

4. CONCLUSION

The resulting model is the classification of predictive modeling of post-flood and abrasion data using
the H20 deep learning approach testing training and testing data with different activation functions and varying
unit layers get the result that by using the maxout activation function get an accuracy of 93.49% with AUC:
0.808 +/- 0.022 (micro average: 0.808). Unit layers tested 200-200 with large layers have the disadvantage of
Assessment History with a longer duration compared to using unit layers 50-50. This approach is used to
optimize the performance and accuracy of predictions during the modeling process using our dataset pool
training. We compared the proposed new deep learning results with other computational benchmark models of
the activation function and obtained no better performance than maxout and ReLU activation functions. Layer
50-50 obtained good performance results with the use of the maxout activation function. Likewise, layer 100-
100 gets good performance by using the ReLU activation function. In the case of our data, the use of maxout
activation has better performance and performance compared to other model uses. The advice for other
researchers is to be able to add more data so that when cross-validating it can be more optimal and have better
performance and performance in the future.
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