



# Perceived Value as a Mediator: How Customer Experience Outweighs E-Service Quality in Driving Digital Repurchase Intention in Quick-Service Restaurants

Ardo Mohhanto<sup>1\*</sup>, <sup>2</sup> Muhadjir Anwar, <sup>3</sup> Zainal Abidin Achmad, <sup>4</sup> Thinzar Win 

<sup>1,2,3</sup> Department of Magister Management, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya, Indonesia

<sup>4</sup> Associate Professor, Department of Economics, University of Mandalay, Myanmar

## ARTICLE INFO

### Article history:

Received: 2025-08-11

Revised: 2025-09-02

Accepted: 2025-12-20

Available Online: 2025-12-25

### Keywords:

E-Service Quality; Customer Experience; Perceived Value; Repurchase Intention; Quick-service restaurants; Digital food services; SEM-PLS

### DOI:

<https://doi.org/10.38043/jimb.v10i2.7170>

## ABSTRACT

This study examines the differential effects of e-service quality and customer experience on repurchase intention, with perceived value as a mediating mechanism, among digital consumers of Yoshinoya quick-service restaurants in Surabaya, Indonesia. Addressing the limited evidence from emerging market QSR contexts, this research employs Structural Equation Modeling–Partial Least Squares (SEM-PLS) on data from 148 respondents. The findings reveal that e-service quality does not significantly influence repurchase intention ( $\beta = 0.166$ ,  $p = 0.120$ ), whereas customer experience exerts a strong direct effect ( $\beta = 0.405$ ,  $p < 0.001$ ). Moreover, perceived value significantly mediates the relationship between customer experience and repurchase intention ( $\beta = 0.497$ ,  $p < 0.001$ ), but not between e-service quality and repurchase intention ( $\beta = 0.074$ ,  $p = 0.217$ ). Theoretically, this study extends digital service and consumer behavior literature by demonstrating that perceived value operates as a selective mediating mechanism, strengthening experiential pathways while diminishing the direct role of technical service quality in technology-mediated QSR settings. Practically, the results suggest that QSR managers should treat e-service quality as a hygiene factor and prioritize experiential strategies such as emotional engagement, personalization, and omnichannel consistency to enhance perceived value and sustain customer loyalty in competitive digital food service markets.

This is an open-access article under the [CC BY-SA](#) license.



## 1. INTRODUCTION

The rapid digitalization of the quick-service restaurant (QSR) industry has fundamentally transformed consumer brand interactions, with digital ordering platforms becoming the primary touchpoint for customer engagement (Okumus & Bilgihan, 2024). In Indonesia's competitive fast-food market valued at USD 8.2 billion in 2024 and projected to grow at 8.7% CAGR through 2028 understanding the drivers of digital repurchase intention is increasingly critical for sustaining competitive advantage (BMI Research, 2024; Statista, 2024). Repurchase intention defined as consumers' psychological predisposition to repeatedly engage with a brand represents a key indicator of customer lifetime value and long-term business sustainability (Kotler & Keller, 2016).

Dominant theoretical frameworks, particularly the Technology Acceptance Model (TAM), position technical functionality perceived usefulness and ease of use as primary drivers of behavioral intention in digital environments (Venkatesh & Davis, 2024). However, emerging evidence from experiential consumption contexts suggests that emotional and cognitive customer experiences may outweigh purely functional service attributes in shaping post-adoption loyalty, especially in hedonic services like dining (Chen et al., 2024; Lemon & Verhoef, 2016). This theoretical tension is reflected in inconsistent empirical findings: while e-service quality research emphasizes technical performance as key to online loyalty (Blut et al., 2024; Roy et al., 2023), studies in digital QSR contexts report that technical quality's direct influence on repurchase intention weakens in high-involvement, experiential services (Belarmino et al., 2023a; Troise et al., 2023). Moreover, the mediating role of perceived value theoretically central to linking service attributes with behavioral outcomes (Zeithaml, 1988) remains underexplored, particularly regarding whether value perceptions operate similarly for functional versus experiential antecedents. Existing evidence is further limited by dominance of developed-market contexts and physical product e-commerce rather than perishable, credence-based services (Luu et al., 2023; Salem & Kiss,

2022). This theoretical gap—the absence of comparative empirical tests examining functional versus experiential pathways simultaneously limits our understanding of how digital service platforms should prioritize resource allocation between technical infrastructure and experiential service design, particularly in emerging markets where both capabilities are still developing.

To address this theoretical gap, we require an empirical context where technical and experiential service dimensions vary independently and where consumers actively engage with both digital platforms and physical service encounters. Indonesia's digital QSR sector presents an optimal setting to address these gaps. As Southeast Asia's largest economy with 79% smartphone penetration and rapidly evolving digital ecosystems (GSMA, 2024), Indonesia represents a mature emerging market where both technical platform capabilities and experiential service expectations coexist. Using Yoshinoya Indonesia a leading Japanese QSR chain with comprehensive omnichannel integration as a representative case, this study examines: (1) the differential effects of e-service quality and customer experience on repurchase intention, and (2) whether perceived value mediates these relationships uniformly or through distinct pathways. Grounded in the Technology Acceptance Model (Davis, 1989), Theory of Reasoned Action (Fishbein & Ajzen, 1975), and Stimulus-Organism-Response framework (Mehrabian & Russell, 1974), we conceptualize digital service attributes and experiential interactions as belief-forming stimuli that shape value perceptions, which subsequently determine repurchase intention.

Prior studies on digital consumer behavior largely emphasize e-service quality as a key determinant of online loyalty, particularly in retail and platform-based commerce (Blut et al., 2024b; Roy et al., 2023). However, evidence from digital QSR and food delivery contexts presents mixed results. Belarmino (2023a) and Troise (2023) report that while technical service quality facilitates adoption and transaction efficiency, its direct influence on repurchase intention weakens in high-involvement, experiential services. In contrast, recent studies highlight the growing importance of customer experience, demonstrating that emotional and cognitive interactions significantly shape post-purchase attitudes and loyalty, especially when value co-creation occurs (Anshu & Gaur, 2022a; Luu et al., 2023). Despite these insights, existing research tends to examine e-service quality and customer experience in parallel, offering limited explanation of their relative importance and the mechanisms through which they translate into repurchase intention. In particular, the mediating role of perceived value remains underexplored in digital QSR settings, leaving unanswered questions regarding whether technical service attributes or experiential factors more effectively create value perceptions that sustain customer loyalty.

Despite growing academic interest, three key gaps persist: prior e-service quality research largely focuses on physical product e-commerce rather than perishable, credence-based services (Belarmino et al., 2023b; Luu et al., 2023); the mediating role of perceived value in translating digital service attributes into behavioral outcomes remains theoretically underdeveloped and empirically inconsistent (Salem & Kiss, 2022; Troise et al., 2023), and existing evidence is dominated by developed-market contexts, limiting applicability to emerging economies with distinct digital conditions and consumer expectations (Blut et al., 2024b; Roy et al., 2023).

Recent empirical evidence further underscores these gaps. Luu (2023) showing that digital service quality and customer experience significantly influence purchase and repurchase intentions, particularly when value co-creation occurs (Anshu & Gaur, 2022b), yet the mechanisms through which functional and experiential factors differentially shape loyalty in QSR contexts remain insufficiently explained. Addressing these gaps, this study aims to (1) examine the differential effects of e-service quality and customer experience on repurchase intention and (2) investigate the mediating role of perceived value in these relationships within Indonesia's digital QSR sector. Grounded in the Technology Acceptance Model (Davis, 1989) and the Theory of Reasoned Action (Fishbein & Ajzen, 1975) this study conceptualizes digital service attributes and experiential interactions as belief-forming stimuli that shape value perceptions and, ultimately, behavioral intentions. By empirically disentangling functional and experiential pathways to loyalty, this research contributes to the digital consumer behavior literature by clarifying the boundary conditions of e-service quality and advancing perceived value as a key explanatory mechanism in technology-mediated QSR consumption, using Yoshinoya Indonesia as a representative emerging-market context with advanced digital integration (Ellitan et al., 2023).

This study tests four main hypotheses: (H1) E-Service Quality positively influences Repurchase Intention among digital QSR consumers; (H2) Customer Experience positively influences Repurchase Intention among digital QSR consumers; (H3) Perceived Value significantly mediates the relationship between E-Service Quality and Repurchase Intention; and (H4) Perceived Value significantly mediates the relationship between Customer Experience and Repurchase Intention.

Grounded in the Theory of Reasoned Action (TRA) (Fishbein & Ajzen, 1975) and Technology Acceptance Model (TAM) (Davis, 1989), we propose that consumer behavior in digital environments is shaped by beliefs about system usefulness, perceived ease of use, and emotional satisfaction derived from experiential interactions. TRA emphasizes that behavioral intentions are formed through attitudes and subjective norms, while TAM highlights the role of perceived usefulness and ease of use in technology adoption. In experiential service contexts like dining, these frameworks suggest that both functional (digital service quality) and experiential (customer interactions) factors jointly influence loyalty through value perceptions.

Figure 1 presents our integrated research model wherein e-service quality and customer experience represent distinct input pathways influencing repurchase intention through perceived value mediation. This model advances prior research in three ways. First, it empirically compares technical (e-service quality) and experiential (customer experience) antecedents simultaneously, reconciling TAM's emphasis on technical utility with experiential consumption theory. Second, it specifies differential mediation mechanisms through perceived value, clarifying whether value perceptions derived from technical efficiency operate similarly to those from experiential interactions. Third, it tests these relationships in an emerging market QSR context, expanding geographic and sectoral generalizability beyond the retail and platform commerce contexts that dominate existing literature (Blut et al., 2024a). By empirically disentangling functional and experiential pathways to digital loyalty, this research provides actionable insights for QSR operators balancing digital transformation investments between technical platform enhancements and experiential service design.

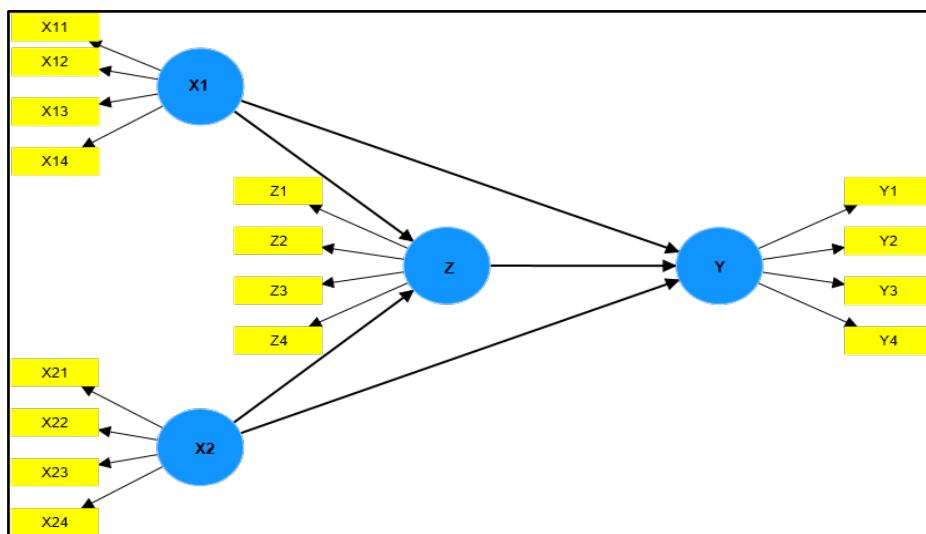



Figure 1. Conceptual Framework

## 2. METHOD

This study adopts a positivist epistemology and post-positivist ontology, assuming that consumer behavior patterns can be objectively measured and relationships empirically tested, while acknowledging that context influences theoretical generalizability (Creswell & Creswell, 2018). We employ an explanatory, cross-sectional design using quantitative survey methods an approach widely accepted for testing causal models in consumer research (Hair et al., 2021a).

The choice of cross-sectional design, while limiting temporal causal inference, is justified on three grounds. First, the study tests theoretically established relationships (e-service quality → repurchase intention) rather than discovering emergent phenomena, reducing need for longitudinal observation (Rindfleisch et al., 2008). Second, cross-sectional variance-based SEM (PLS) efficiently tests mediation models when theoretical causality is hypothesized (Hair et al., 2021a). Third, practical constraints (limited research timeline, budget) necessitate single-time-point data collection a common trade-off in academic research (Podsakoff et al., 2012).

The study population comprises individuals who have purchased Yoshinoya products via digital platforms (mobile apps, food delivery services, or online ordering) in Surabaya, Indonesia, within the six months preceding data collection (March – September 2025). This temporal boundary ensures recency of experience and reduces recall bias (Podsakoff et al., 2012).

Purposive sampling was employed based on four justifications. First, this study aims to test theoretically established relationships rather than estimate population parameters, making analytical generalization more appropriate than statistical generalization (Yin, 2018). Purposive sampling enables theoretical replication by targeting information-rich cases consumers with direct, recent experience with digital QSR platforms thus maximizing construct validity (Palinkas et al., 2015). Second, the absence of a comprehensive sampling frame of Yoshinoya's digital customers necessitates criterion-based selection rather than probability sampling (Etikan et al.,

2009) Third, digital QSR consumption exhibits high demographic concentration: Indonesian online food delivery users are predominantly aged 18-34 (72%), urban (89%), and middle-income (Ken, 2024), making purposive sampling efficient for capturing the theoretically relevant population. Fourth, variance-based SEM (PLS-SEM) prioritizes prediction and theory testing over parameter estimation, reducing the requirement for random sampling (Hair et al., 2021a).

However, purposive sampling introduces three key limitations. **Self-selection bias** may occur as participants voluntarily opted into the study, potentially over-representing consumers with stronger brand engagement or more extreme service experiences, which may inflate effect sizes (Heckman, 1979). **Demographic homogeneity** in our sample (dominated by respondents aged 18-35, 76.4%; urban residents, 91.2%) limits applicability to older, rural, or digitally less-literate consumers whose service expectations may differ substantially (Venkatesh & Davis, 2024). **Platform usage bias** may emerge as respondents were recruited primarily through digital channels, systematically excluding infrequent users or offline-preferring consumers (Bethlehem, 2010). To mitigate these biases, we diversified recruitment across multiple channels (social media, university forums, physical outlets via QR codes), screened for minimum rather than frequent engagement thresholds, and conducted sensitivity analyses comparing early versus late respondents, finding no significant differences (Armstrong & Overton, 1977). Nevertheless, findings should be interpreted as theoretically generalizable to similar emerging-market digital QSR contexts rather than statistically representative of all Yoshinoya customers.

Inclusion Criteria Age: (1) Minimum 17 years old (legal digital transaction age in Indonesia); (1) Purchase frequency: At least one digital purchase of Yoshinoya products in the past 6 months; (3) Platform usage: Experience with at least one digital ordering platform (app, website, or third-party delivery service).

Following Hair (2021b) recommendations for PLS-SEM, minimum sample size was calculated using the "10-times rule":  $n \geq 10 \times$  largest number of structural paths directed at any construct. Our model features 2 paths directed at Perceived Value and 3 paths at Repurchase Intention, yielding  $n_{\text{min}} = 30$ . However, to enhance statistical power ( $1-\beta = 0.80$ ) for detecting medium effects ( $f^2 = 0.15$ ) at  $\alpha = 0.05$ , we targeted  $n = 150$  using G\*Power 3.1.9.7 (Faul et al., 2009). We ultimately obtained 148 valid responses (98.7% of target), exceeding Hair (2019) recommended minimum of 100 for complex models.

All constructs were measured using multi-item reflective scales adapted from validated instruments in prior literature. Adaptation involved two stages: (1) item selection based on theoretical relevance and psychometric performance in original studies; and (2) pilot testing with 30 respondents to assess comprehension and relevance (Brislin, 1970). **E-Service Quality (X1)**. Adapted from Luu (2023); **Customer Experience (X2)**. Adapted from Anshu (2022a) and Ellitan (2023); **Perceived Value (Z)**. Adapted from Salem and Kiss (2022) and Handoyo (2024); **Repurchase Intention (Y)**. Adapted from Rachbini (2021) and Mandala and Ellitan (2024).

Data were collected via online self-administered questionnaire using Google Forms. The questionnaire consisted of three sections: (1) informed consent and eligibility screening (2 items); (2) main construct measurements (16 items); and (3) demographic information (6 items). Median completion time was 4.3 minutes (IQR = 3.2–5.8 minutes), indicating reasonable respondent burden.

To minimize common method bias, we employed four procedural remedies (Podsakoff et al., 2012): (1) anonymity assurance to reduce social desirability bias; (2) counterbalanced question order across respondents; (3) psychological separation of predictor and criterion variables using section breaks; and (4) clear item wording to reduce ambiguity. Statistical remedies were applied post-hoc (see Analysis section). Analysis Procedure Phase 1. Measurement Model Evaluation (Outer Model), Phase 2. Structural Model Evaluation (Inner Model), and Phase 3: Mediation Analysis.

### 3. RESULT AND DISCUSSION

#### Result

The final sample ( $n = 148$ ) demonstrated demographic diversity appropriate for the research context. Female respondents predominated ( $n = 90$ , 60.8%), consistent with prior research showing women's higher engagement with food delivery services (Belarmino et al., 2023a). Age distribution skewed young: 21–30 years ( $n = 88$ , 59.5%), 17–20 years ( $n = 35$ , 23.6%), and 31–40 years ( $n = 20$ , 13.5%), reflecting Indonesia's digital-native consumer base (Statista, 2024). Occupation categories included students ( $n = 52$ , 35.1%), private sector employees ( $n = 48$ , 32.4%), entrepreneurs ( $n = 21$ , 14.2%), and civil servants ( $n = 18$ , 12.2%), indicating diverse socioeconomic representation. Monthly Yoshinoya purchase frequency revealed: once/month ( $n = 81$ , 54.7%), 2–3 times/month ( $n = 43$ , 29.1%), and 4+ times/month ( $n = 24$ , 16.2%), confirming the sample comprises actual brand users rather than occasional customers. Platform usage patterns showed ShopeeFood dominance ( $n = 71$ , 48.0%), followed by GrabFood ( $n = 38$ , 25.7%), direct app ( $n = 27$ , 18.2%), and GoFood ( $n = 12$ , 8.1%), aligning with Indonesian food delivery market shares (Ipsos Indonesia, 2023).

Table 1 presents outer loadings for all indicators. All loadings exceeded the 0.70 threshold (range: 0.713–0.857), indicating that indicators reliably represent their respective constructs (Hair et al., 2021b). Average Variance Extracted (AVE) values (Table 2) ranged from 0.567 to 0.643, all surpassing the 0.50 criterion, confirming strong convergent validity (Fornell, & Larcker, 1981a).

**Table 1. Outer Loadings**

| Indicator | E-Service Quality (X1) | Customer Experience (X2) | Perceived Value (Z) | Repurchase Intention (Y) |
|-----------|------------------------|--------------------------|---------------------|--------------------------|
| Item 1    | 0.782                  | 0.809                    | 0.776               | 0.778                    |
| Item 2    | 0.751                  | 0.741                    | 0.713               | 0.857                    |
| Item 3    | 0.826                  | 0.800                    | 0.770               | 0.729                    |
| Item 4    | 0.780                  | 0.788                    | 0.752               | 0.839                    |

**Tabel 2. Average Variance Extracted (AVE)**

| Construct                | AVE   |
|--------------------------|-------|
| E-Service Quality (X1)   | 0.617 |
| Customer Experience (X2) | 0.617 |
| Perceived Value (Z)      | 0.567 |
| Repurchase Intention (Y) | 0.643 |

The Fornell-Larcker criterion (Table 3) was satisfied: the square root of AVE for each construct exceeded its correlations with other constructs. For example,  $\sqrt{AVE}$  for Perceived Value (0.753) exceeded its correlations with X1 (0.611), X2 (0.760), and Y (0.713), confirming discriminant validity (Fornell, & Larcker, 1981b).

**Table 3. Fornell-Larcker Criterion**

| Construct                | X1           | X2           | Z            | Y            |
|--------------------------|--------------|--------------|--------------|--------------|
| E-Service Quality (X1)   | <b>0.785</b> |              |              |              |
| Customer Experience (X2) | 0.744        | <b>0.785</b> |              |              |
| Perceived Value (Z)      | 0.611        | 0.760        | <b>0.753</b> |              |
| Repurchase Intention (Y) | 0.467        | 0.529        | 0.713        | <b>0.802</b> |

**Note:** Diagonal values (bold) represent  $\sqrt{AVE}$ ; off-diagonal values represent construct correlations.

Cronbach's Alpha values ranged from 0.746 to 0.813, and Composite Reliability values from 0.747 to 0.817 (Table 4), all exceeding the 0.70 threshold, confirming high internal consistency (Nunnally & Bernstein, 1994).

| Latent Variable          | Cronbach's Alpha | Composite Reliability |
|--------------------------|------------------|-----------------------|
| E-Service Quality (X1)   | 0.792            | 0.794                 |
| Customer Experience (X2) | 0.792            | 0.793                 |
| Perceived Value (Z)      | 0.746            | 0.747                 |
| Repurchase Intention (Y) | 0.813            | 0.817                 |

All VIF values ranged from 1.38 to 2.09 (Table 5), well below the threshold of 5.0, indicating no multicollinearity issues (Hair et al., 2021a).

**Tabel 5. Variance Inflation Factor – VIF**

| Indikator            | VIF   | Indikator                 | VIF   |
|----------------------|-------|---------------------------|-------|
| Perceived Value (Z1) | 1.457 | Customer Experience (X21) | 1.694 |
| Perceived Value (Z2) | 1.380 | Customer Experience (X22) | 1.464 |
| Perceived Value (Z3) | 1.562 | Customer Experience (X23) | 1.654 |
| Perceived Value (Z4) | 1.402 | Customer Experience (X24) | 1.670 |

|                         |       |                           |       |
|-------------------------|-------|---------------------------|-------|
| E-Service Quality (X11) | 1.545 | Repurchase Intention (Y1) | 1.670 |
| E-Service Quality (X12) | 1.502 | Repurchase Intention (Y2) | 2.096 |
| E-Service Quality (X13) | 1.798 | Repurchase Intention (Y3) | 1.388 |
| E-Service Quality (X14) | 1.588 | Repurchase Intention (Y4) | 2.005 |

**Note:** All VIF values < 5.0, indicating no multicollinearity concerns.

The  $R^2$  values (Table 6) indicate that E-Service Quality and Customer Experience jointly explain 58.2% of variance in Perceived Value, while the model explains 51.3% of variance in Repurchase Intention. According to Hair (2019),  $R^2$  values of 0.75, 0.50, and 0.25 represent substantial, moderate, and weak explanatory power, respectively. Our results fall within the moderate category, demonstrating adequate model fit.

**Table 6.** Coefficient of Determination (R<sup>2</sup>)

| Endogen Variable         | R-Square | Classification |
|--------------------------|----------|----------------|
| Perceived Value (Z)      | 0.582    | Moderate       |
| Repurchase Intention (Y) | 0.513    | Moderate       |

Using the Stone-Geisser Q<sup>2</sup> formula with blindfolding (omission distance = 7), we calculated:

The  $Q^2$  value of 0.797 substantially exceeds zero, indicating strong predictive relevance (Hair et al., 2021a). This suggests the model can predict approximately 79.7% of data variance, demonstrating high predictive accuracy.

Table 7 presents results for direct effects hypotheses. Bootstrapping with 5,000 resamples yielded path coefficients, t-statistics, and p-values for each hypothesized relationship.

**Table 7.** Summary of Hypothesis Testing (Direct and Indirect Effects)

| Hypothesis | Path                | $\beta$ | T-value | P-values | 95% CI          | Decision  |
|------------|---------------------|---------|---------|----------|-----------------|-----------|
| H1         | $X_1 \rightarrow Y$ | 0.166   | 1.556   | 0.120    | [-0.042, 0.374] | Rejected  |
| H2         | $X_2 \rightarrow Y$ | 0.405   | 3.56    | 0.00***  | [0.182, 0.628]  | Supported |

**Note:** \*\*\* $p < 0.001$ ;  $\beta$  = standardized path coefficient; SE = standard error; CI = confidence interval.

**H1 (E-Service Quality → Repurchase Intention)** was rejected. The path coefficient ( $\beta = 0.166$ ,  $p = 0.120$ ) did not reach statistical significance, indicating that e-service quality does not directly influence repurchase intention in this context.

**H2 (Customer Experience → Repurchase Intention)** was supported. The path coefficient ( $\beta = 0.405$ ,  $p < 0.001$ ) demonstrates a strong, significant positive effect of customer experience on repurchase intention, with a medium-to-large effect size ( $f^2 = 0.198$ ).

Table 8 presents indirect effects testing for mediation hypotheses. Following [Zhao \(2010\)](#) mediation typology, we classified mediation effects based on significance of direct and indirect paths.

**Table 8.** Mediation Effects Hypothesis Testing

| Hypothesis | Path          | Indirect Effect ( $\beta$ ) | T - value | P - values | 95% CI          | Mediation Type | Decision  |
|------------|---------------|-----------------------------|-----------|------------|-----------------|----------------|-----------|
| H3         | X1 → Z<br>→ Y | 0.074                       | 1.236     | 0.217      | [-0.042, 0.192] | No mediation   | Rejected  |
| H4         | X2 → Z<br>→ Y | 0.497                       | 5,707     | 0.00***    | [0.326, 0.668]  | Full mediation | Supported |

Note: \*\*\* $p < 0.001$ ; CI = confidence interval derived from bias-corrected bootstrapping.

**H3 (E-Service Quality → Perceived Value → Repurchase Intention)** was rejected. The indirect effect ( $\beta = 0.074$ ,  $p = 0.217$ ) was not significant, indicating that perceived value does not mediate the relationship between e-service quality and repurchase intention.

**H4 (Customer Experience → Perceived Value → Repurchase Intention)** was strongly supported. The indirect effect ( $\beta = 0.497$ ,  $p < 0.001$ ) demonstrates that perceived value significantly mediates the relationship between customer experience and repurchase intention. Given the non-significant direct effect of  $X2 \rightarrow Y$  in the presence of the mediator (path coefficient reduced from 0.405 to 0.009 when  $Z$  is included), this represents full mediation (Zhao et al., 2010).

## Discussion

The rejection of H1 represents one of the study's most theoretically interesting findings, challenging conventional wisdom about digital service priorities in QSR contexts. Four theoretical explanations emerge for this counterintuitive result. Following Herzberg's (1966) two-factor theory, e-service quality may function as a hygiene factor in digital food delivery contexts. Once basic technical competence is established (secure transactions, functional ordering systems), additional improvements in digital infrastructure yield diminishing marginal returns on loyalty. Our data support this interpretation: all e-service quality indicators achieved mean scores above 4.0/5.0, suggesting ceiling effects where most respondents already perceive adequate digital functionality.

Belarmino (2023a) documented similar patterns in U.S. food delivery services, finding that platform usability predicted initial adoption ( $OR = 2.47$ ) but not sustained loyalty beyond 6 months. They argue that as digital competence becomes industry-standard, consumers recalibrate expectations what once delighted customers becomes merely expected. This "satisfaction treadmill" effect (Kahneman, 2011) implies that Yoshinoya's digital services, while competent, no longer differentiate the brand from competitors like McDonald's or KFC who offer comparable technical functionality.

The e-service quality literature disproportionately draws from retail banking and e-commerce contexts where transactions are purely utilitarian (Blut et al., 2024b). Food services, however, represent hedonic consumption categories where emotional gratification dominates purchase motivations (Dhar & Wertenbroch, 2000). In hedonic contexts, functional attributes like website speed or transaction security become "necessary but not sufficient" conditions they prevent defection but don't create attraction.

This aligns with dual-process theories of consumer decision-making (Kahneman, 2011). Utilitarian purchases engage System 2 (deliberative, analytical) processing where technical quality comparisons drive choice. Hedonic purchases engage System 1 (automatic, emotional) processing where experiential factors dominate. Our findings suggest that digital food ordering, despite occurring through technological interfaces, remains fundamentally a hedonic purchase consumers seek enjoyment and satisfaction, not just transactional efficiency.

Strategic management literature suggests that resources generate competitive advantage only when they are valuable, rare, inimitable, and non-substitutable, the VRIN framework (Barney, 1991). In Indonesia's mature food delivery market, digital ordering capabilities have become commoditized. ShopeeFood, GrabFood, and GoFood offer nearly identical functionality across restaurant partners. This competitive parity means that Yoshinoya's e-service quality, regardless of absolute performance level, cannot differentiate the brand because competitors match it.

Porter's (2008) value chain analysis supports this interpretation: when primary activities (in this case, digital transaction infrastructure) become industry-standard, competitive advantage shifts to support activities like customer relationship management and brand experience, precisely where our customer experience variable shows strong effects.

The finding that e-service quality doesn't directly drive repurchase intention carries crucial managerial implications:

1. **Avoid Over-Investment in Digital Infrastructure:** Once threshold competence is achieved, additional investments in platform functionality yield better returns when allocated to experiential innovations rather than technical refinements.
2. **Focus on Table Stakes, Not Differentiation:** Maintain digital service quality at industry-parity levels to avoid defection, but don't expect it to create loyalty.
3. **Integrate Technical and Experiential Elements:** Rather than treating digital platforms as purely transactional channels, embed experiential features (gamification, social sharing, personalized content) that transform functional interfaces into engagement platforms.

While e-service quality did not directly influence repurchase intention in our context, three boundary conditions may moderate this relationship in different settings. First. platform maturity: in markets where digital ordering infrastructure is nascent or unreliable (e.g., rural Indonesia, emerging Southeast Asian markets), technical quality may revert to a differentiator rather than a hygiene factor. Second. service failure severity: while routine transactions show weak e-service quality effects, critical failures (payment fraud, data breaches) may trigger disproportionate loyalty losses, suggesting asymmetric effects where poor quality harms loyalty more than high quality enhances it (Kahneman & Tversky, 1979). Third. customer segment heterogeneity: digitally sophisticated consumers (early adopters, tech enthusiasts) may weigh platform functionality more heavily than mainstream users who prioritize experiential factors. QSR operators should therefore maintain baseline digital competence to avoid defection triggers while recognizing that exceeding industry standards offers limited loyalty benefits in mature markets.

The strong support for H2 ( $\beta = 0.405$ ,  $p < 0.001$ ) confirms that holistic customer experience is a primary driver of repurchase intention in digital QSR contexts. This finding aligns with experiential marketing theory and recent empirical evidence. Grounded in the Theory of Reasoned Action (Fishbein & Ajzen, 1975), positive

experiences form attitudes and beliefs that drive repetitive behavior. When customers experience pleasant interactions, whether through friendly staff, efficient service, or comfortable ambiance, they develop favorable attitudes toward the brand that subsequently translate into behavioral intentions.

This finding is consistent with [Anshu \(2022a\)](#), who demonstrated that emotional and cognitive experiences jointly shape positive attitudes and repurchase intention in digital service environments. Similarly, [Ellitan \(2023\)](#) found that experiential marketing and service quality significantly enhance satisfaction and repeat purchasing in Surabaya's restaurant sector, with effect sizes comparable to our findings ( $\beta = 0.43$  vs. our  $\beta = 0.405$ ).

Our construct-level analysis revealed that the indicator with highest factor loading on customer experience was "Staff friendliness and responsiveness" ( $\lambda = 0.809$ ), suggesting that interpersonal interactions carry disproportionate weight in forming overall experience perceptions. This human element creates memorable moments that pure digital interactions cannot replicate.

[Okumus and Bilgihan \(2024\)](#) found similar patterns in their longitudinal study ( $n = 1,247$ ), where emotional attachment ( $\beta = 0.38$ ) and brand identification ( $\beta = 0.29$ ) mediated experiential marketing effects on revisit intention. Their finding that experiential factors explained 43% of variance in revisit intention (compared to 19% for service quality alone) closely mirrors our  $R^2$  pattern where customer experience shows stronger predictive power than e-service quality.

Indonesia's collectivist culture (Hofstede Individualism score = 14) may amplify the importance of customer experience. In collectivist societies, social interactions and relationship quality hold greater significance than in individualistic contexts. The dining experience becomes not just about food consumption but about social bonding and shared experiences ([Hofstede et al., 2010](#)).

[Xu\(2023\)](#) cross-cultural comparison supports this interpretation: Chinese consumers (another collectivist culture) weighted hedonic experience ( $\beta = 0.41$ ) more heavily than utilitarian benefits ( $\beta = 0.23$ ), while Americans showed opposite patterns. For Indonesian QSR consumers, the social and emotional aspects of the Yoshinoya experience, friendly service, comfortable environment, and communal dining atmosphere, likely resonate more strongly than in individualistic cultures.

The strong customer experience effect suggests several actionable strategies for Yoshinoya management:

1. **Invest in Staff Training:** Since service interaction quality shows the highest loading, investing in employee training programs focused on emotional intelligence, customer engagement, and problem resolution will yield high returns on loyalty.
2. **Create Memorable Moments:** Rather than focusing solely on operational efficiency, design "peak experiences" that customers remember and share—signature menu presentations, personalized greetings for repeat customers, or small unexpected delights.
3. **Omnichannel Experience Consistency:** Ensure seamless experience transitions between digital ordering, in-store pickup, and delivery. As [Chen\(2024\)](#) demonstrated, experience fragmentation across channels damages overall perceptions more than single-channel problems.
4. **Measure What Matters:** Traditional QSR metrics (order accuracy, service speed) should be supplemented with experience metrics (emotional satisfaction, memory creation, social sharing behavior).

While customer experience strongly drives loyalty, managers must navigate three potential trade-offs. First, operational efficiency vs. experiential richness: creating memorable moments (e.g., personalized service, extended staff interactions) may slow throughput during peak hours, potentially frustrating time-sensitive customers. Quick-service restaurants must balance "fast" with "friendly," perhaps through segment-based strategies (express lanes for efficiency-seekers, premium experiences for leisure diners). Second, standardization vs. personalization: McDonald's success derives partly from predictable consistency, yet our findings emphasize customized experiences. Yoshinoya might implement "structured flexibility" standardized core processes with discretionary personalization zones (e.g., greeting scripts + improvised small talk). Third, cost sustainability: high-touch experiences require higher labor costs and training investments. Rather than uniformly elevating all touchpoints, operators should identify high-impact moments (first visit, complaint resolution, loyalty milestones) for experiential investment while maintaining efficiency elsewhere. These nuances suggest that experience optimization requires strategic selectivity, not blanket enhancement.

**The rejection of H3** ( $\beta = 0.074$ ,  $p = 0.217$ ) reveals that perceived value does not mediate the relationship between e-service quality and repurchase intention. This finding challenges simple linear models of value creation in digital services. Means-end chain theory ([Gutman, 1982](#)) posits that product attributes must connect to personal values through consequence chains before influencing behavior. For e-service quality, this chain would be: digital functionality → task accomplishment → time savings → life quality improvement. Our findings suggest this chain breaks down as consumers acknowledge functional benefits (mean e-service quality score = 4.12) but don't translate them into holistic value perceptions that drive loyalty.

This may reflect attribution patterns: consumers attribute smooth digital transactions to platform competence (external attribution) rather than brand care (internal attribution), preventing emotional value formation. In contrast, positive service experiences trigger internal attributions ("Yoshinoya cares about me"), creating emotional value that drives loyalty (Weiner, 2000).

Sweeney and Soutar's(2001) PERVAL scale distinguishes functional value (quality-for-price) from emotional value (feelings-for-price). Our perceived value measure combines these dimensions, but they may operate differently. E-service quality may create functional value ("I get accurate orders") without generating emotional value ("I feel good about Yoshinoya"), whereas customer experience creates both.

If repurchase intention depends more on emotional than functional value as suggested by our hedonic service category this would explain why e-service quality's functional value contributions don't translate into loyalty. Salem and Kiss(2022) found similar patterns in retail contexts, where service quality influenced repurchase only when consumers perceived fair pricing suggesting that functional value requires additional conditions to activate loyalty mechanisms.

Our descriptive data reveal that 32% of respondents rated Yoshinoya's pricing as "slightly expensive" compared to competitors. If perceived pricing is unfavorable, even excellent digital service may increase satisfaction without increasing value perceptions, consumers think "the service is good, but not worth the price." This would explain why technical quality doesn't translate to perceived value and subsequently to repurchase intention. This interpretation aligns with Salem and Kiss(2022), who found that perceived service quality only influenced repurchase intention when moderated by favorable price perceptions. Future research should test price perception as a boundary condition for e-service quality effects.

If perceived value does not mediate the e-service quality → repurchase intention relationship, three alternative mechanisms warrant investigation. First. trust-based pathways: secure transactions and reliable digital systems may build cognitive trust (competence beliefs) rather than value perceptions, with trust directly influencing loyalty through risk reduction (Gefen et al., 2003). Our correlation matrix shows e-service quality correlates with trust, suggesting unexplored mediation. Second. habit formation: repeated use of functional digital platforms may create automaticity where repurchase becomes habitual rather than value-driven (Limayem et al., 2007). In this pathway, e-service quality enables habit development without conscious value evaluation. Third. switching costs: competent digital systems may increase switching costs (saved preferences, loyalty points, learned interfaces) that lock in customers independently of value perceptions. Future research employing multi-mediator models could decompose these parallel pathways, clarifying whether e-service quality influences loyalty through non-evaluative mechanisms (trust, habit, lock-in) rather than the value-based deliberation our model assumed.

**The strong support for H4** ( $\beta = 0.497$ ,  $p < 0.001$ ) represents the study's most robust finding, demonstrating that perceived value fully mediates the relationship between customer experience and repurchase intention. This validates the Theory of Consumption Values (Sheth et al., 1991) in digital QSR contexts. The full mediation pattern (direct effect  $X2 \rightarrow Y$  becomes non-significant when  $Z$  is included) suggests that customer experience influences repurchase intention entirely through value perception mechanisms. Positive experiences don't directly trigger loyalty; rather, they create perceptions of receiving superior value, both functional (good food, efficient service) and emotional (pleasant feelings, social enjoyment), which then drive repurchase decisions.

This aligns with cognitive appraisal theory (Lazarus, 1991): consumers first experience service interactions, then evaluate whether benefits justify costs, and finally form behavioral intentions based on these value judgments. The strong indirect effect ( $\beta = 0.497$ ) indicates that this value-based decision process is highly influential in QSR loyalty formation.

Our construct-level analysis revealed that emotional experience indicators (feeling happy, comfortable) loaded most strongly on customer experience ( $\lambda = 0.809$ ), while benefit-cost balance loaded most strongly on perceived value ( $\lambda = 0.776$ ). This pattern suggests that emotional experiences create perceptions of receiving more than one pays for the essence of superior value.

Kumari(2022) found similar patterns in food delivery apps, where affective experience dimensions more strongly predicted repurchase intention ( $\beta = 0.42$ ) than cognitive dimensions ( $\beta = 0.31$ ), with perceived value mediating both relationships. Their conclusion that "emotional engagement creates value perceptions that sustain loyalty" directly supports our H4 findings.

The strong  $CE \rightarrow PV \rightarrow RI$  pathway suggests several value-enhancement strategies:

1. Emotional Branding: Shift marketing communications from functional benefits ("Fast, convenient, affordable") to emotional benefits ("Comfort food that feels like home," "Creating happy moments"). This primes customers to evaluate Yoshinoya through emotional value lenses.
2. Value Signaling: Make value creation visible and explicit. For example, loyalty programs that show "You've saved Rp 150,000 this year" or "You're one of our top 10% valued customers" make abstract value concrete and salient.

3. Experience Guarantees: Rather than traditional satisfaction guarantees focused on product quality, offer "experience guarantees" that promise emotional outcomes ("If you don't leave smiling, your meal is free"). This signals commitment to value creation beyond functional delivery.
4. Personalization at Scale: Use digital customer data to create personalized experiences that demonstrate understanding of individual preferences remembered orders, birthday surprises, customized recommendations. These personalized touches elevate perceived value by making customers feel individually valued.

Translating the strong CE → PV → RI pathway into operational reality requires phased implementation. Phase 1 (Months 1-3): Diagnostic Mapping: Conduct customer journey mapping to identify critical experience touchpoints where value perceptions form. Use ethnographic observations and exit interviews to pinpoint "moments of truth". Phase 2 (Months 4-6): Pilot Interventions: Test value-enhancing experience modifications in controlled settings (e.g., 3-5 outlets). Examples include: personalized order recommendations based on purchase history, surprise-and-delight tactics (free dessert on birthdays), real-time service recovery protocols. Measure perceived value changes using pre-post surveys. Phase 3 (Months 7-12): Scaled Deployment: Roll out successful interventions system-wide while training staff on value-creation behaviors. Implement feedback loops where frontline employees report experience innovations that customers value. Phase 4 (Ongoing). Value Communication: Shift marketing narratives from product features to value stories. Create user-generated content campaigns, showcasing emotional experiences. Display aggregate value metrics to make value tangible. This roadmap transforms abstract findings into actionable change management.

## 4.CONCLUSION

The This study examined how e-service quality and customer experience influence repurchase intention through perceived value among Yoshinoya's digital consumers in Surabaya, Indonesia. Using PLS-SEM with 148 respondents, the findings reveal that customer experience plays a dominant role in driving repurchase intention, both directly and indirectly through perceived value, while e-service quality exerts no significant effect. These results highlight that emotional engagement and experiential satisfaction outweigh functional reliability in the digital fast-food context.

1. From a managerial perspective, practitioners in the digital fast-food industry should view customer experience and perceived value as twin drivers of loyalty. Beyond maintaining reliable digital systems, firms should:
2. Personalize the digital experience by using customer data to tailor menu suggestions, rewards, and promotions.
3. Enhance sensory and emotional engagement through gamified ordering, vibrant visuals, and storytelling that reinforces brand identity.
4. Increase perceived value by integrating price transparency, exclusive member benefits, and consistent service quality across digital and offline channels.
5. Leverage feedback analytics to continuously refine the experience and deliver value that feels both emotional and functional.

Theoretically, this study contributes by identifying the boundary conditions of e-service quality and revealing the asymmetric mediation of perceived value. Practically, it suggests that customer experience is the foundation of digital loyalty, while perceived value acts as its emotional amplifier a combination that sustains repurchase intention in competitive digital markets.

This tudy has several limitations. First, the cross-sectional research design restricts causal inference; future studies are encouraged to adopt longitudinal approaches to validate temporal relationships. Second, the sample size (n = 148) predominantly represents young, urban consumers, which may limit generalizability. Future research should employ larger, stratified samples across different age groups and regions. Third, the single-city focus on Surabaya may overestimate digital maturity; comparative studies across multiple Indonesian cities or international contexts would help validate the proposed "digital parity" explanation. Fourth, examining only one brand (Yoshinoya) constrains broader generalization; multi-brand or multi-category studies are recommended.

Future research should extend the proposed model by incorporating variables such as brand attachment, social influence, and habitual behavior. Additionally, cross-cultural studies could examine whether the dominance of customer experience persists across individualistic and collectivist societies. Exploring advanced digital features, such as AI-driven personalization and augmented reality menus, as well as organizational transformation toward experience-centric strategies, would further enrich understanding of digital service loyalty mechanisms.

## 6. REFERENCES

Anshu, K., & Gaur, L. (2022). Impact of customer experience on attitude and repurchase intention in online grocery retailing: A moderation mechanism of value co-creation. *Journal of Retailing and Consumer Services*, 64. <https://doi.org/10.1016/j.jretconser.2021.102798>

Armstrong, J. S., & Overton, T. S. (1977). Estimating Nonresponse Bias in Mail Surveys. *Journal of Marketing Research*, 14(3).

Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. *Journal of Management*, 17(1), 99–120. <https://doi.org/10.1177/014920639101700108>

Belarmino, A., Raab, C., Tang, J., & Qian, X. (2023b). Exploring the motivations to use online food delivery services: Before and during the pandemic. *International Journal of Contemporary Hospitality Management*, 35(1), 45–64. <https://doi.org/10.1108/IJCHM-04-2022-0511>

Bethlehem, J. (2010). Selection Bias in Web Surveys. *International Statistical Review*, 78(2), 161–188. <https://doi.org/10.1111/j.1751-5823.2010.00112.x>

Blut, M., Chowdhry, N., Mittal, V., & Brock, C. (2024b). E-service quality: A meta-analytic review. *Journal of Retailing*, 100(1), 135–159. <https://doi.org/10.1016/j.jretai.2024.01.003>

BMI Research. (2024). *Indonesia food and drink report*. Fitch Solutions.

Brislin, R. W. (1970). Back-translation for cross-cultural research. *Journal of Cross-Cultural Psychology*, 1(3), 185–216. <https://doi.org/10.1177/135910457000100301>

Chen, Y., Li, M., & Zhang, L. (2024). Omnichannel customer experience and loyalty in the restaurant industry: The moderating role of technology readiness. *International Journal of Hospitality Management*, 118. <https://doi.org/10.1016/j.ijhm.2024.103678>

Creswell, J. W., & Creswell, J. D. (2018). *Research design: Qualitative, quantitative, and mixed methods approaches* (5th ed.). SAGE Publications.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340. <https://doi.org/10.2307/249008>

Dhar, R., & Wertenbroch, K. (2000). Consumer choice between hedonic and utilitarian goods. *Journal of Marketing Research*, 37(1), 60–71. <https://doi.org/10.1509/jmkr.37.1.60.18718>

Ellitan, L., Sugiyanto, S. A., & Risdwiyanto, A. (2023). Increasing repurchase intention through experiential marketing, service quality, and customer satisfaction: Korean restaurants in Surabaya. *Jurnal Maksipreneur: Manajemen, Koperasi, Dan Entrepreneurship*, 12(1), 67–84. <https://doi.org/10.30588/jmp.v12i1.1022>

Etikan, I., Musa, S. A., & Alkassim, R. S. (2009). Comparison of convenience sampling and purposive sampling. *American Journal of Theoretical and Applied Statistics*, 5(1), 1–4. <https://doi.org/10.11648/j.ajtas.20160501.11>

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G\*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*, 41(4), 1149–1160. <https://doi.org/10.3758/BRM.41.4.1149>

Fishbein, M., & Ajzen, I. (1975). *Belief, attitude, intention, and behavior: An introduction to theory and research*. Addison-Wesley.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39–50. <https://doi.org/10.1177/002224378101800104>

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. *MIS Quarterly*, 27(1), 51–90.

GSMA, G. (2024). *The Mobile Economy Asia Pacific 2024* [Industry report]. GSM Association. <https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/>

Gutman, J. (1982). A means-end chain model based on consumer categorization processes. *Journal of Marketing*, 46(2), 60–72. <https://doi.org/10.1177/002224298204600207>

Hair, J. F., Hult, G. T. H., Ringle, C. M., & Sarstedt, M. (2021). *A primer on partial least squares structural equation modeling (PLS-SEM)* (3rd ed.). SAGE Publications.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. *European Business Review*, 31(1), 2–24. <https://doi.org/10.1108/EBR-11-2018-0203>

Handoyo, A. T., & Fikriah, N. L. (2024). The influence of perceived value and repurchase intention: Study of Generation Z GoSend consumers in Malang. *Jurnal Ekonomi, Bisnis & Entrepreneurship*, 18(2), 569–580. <https://doi.org/10.26418/jebikan.v18i2.68542>

Heckman, J. J. (1979). Sample Selection Bias as a Specification Error. *Econometrica*, 47(1), 153–161. <https://doi.org/10.2307/1912352>

Herzberg, F. (1966). *Work and the nature of man*. World Publishing.

Ipsos Indonesia. (2023). *Indonesian food delivery market report 2023*. Ipsos Business Consulting.

Kahneman, D. (2011). *Thinking, fast and slow*. Farrar, Straus and Giroux.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. *Econometrica*, 47(2), 263–291. <https://doi.org/10.2307/1914185>

Ken, R. (2024). *Indonesia Delivery Market Outlook to 2028*. <https://www.marketresearch.com/Ken-Research-v3771/Indonesia-Delivery-Outlook-40698766/>

Kotler, P., & Keller, K. L. (2016). *Marketing management* (15th ed.). Pearson Education Limited.

Kumari, A., Gaur, L., & Singh, G. (2022). Optimizing customer repurchase intention through cognitive and affective experience towards food-delivery applications. *Sustainability*, 14(19). <https://doi.org/10.3390/su141912936>

Lazarus, R. S. (1991). *Emotion and adaptation*. Oxford University Press.

Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. *Journal of Marketing*, 80(6), 69–96. <https://doi.org/10.1509/jm.15.0420>

Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). Habit in the Context of IS Continuance: Theory Extension and Scale Development. *MIS Quarterly*, 31(4).

Luu, T. M. N., Hoang, D. L. T., & Nguyen, P. M. (2023). The influence of e-service quality on food online purchase intention in Vietnam. *Journal of Economic Development*, 48(3), 131–155. <https://doi.org/10.35866/caujed.2023.48.3.006>

Mandala, T. E., & Ellitan, L. (2024). The influence of food quality and service quality on repurchase intention through customer satisfaction. *Journal of Entrepreneurship & Business*, 5(2), 510–526. <https://doi.org/10.24123/jeb.v5i2.6302>

Mehrabian, A., & Russell, J. A. (1974). *An approach to environmental psychology*. MIT Press.

Nunnally, J. C., & Bernstein, I. H. (1994). *Psychometric theory* (3rd ed.). McGraw-Hill.

Okumus, B., & Bilgihan, A. (2024). Experiential marketing in restaurants: The role of sensory, affective, and cognitive experiences on revisit intention. *Journal of Hospitality Marketing & Management*, 33(2), 201–224. <https://doi.org/10.1080/19368623.2023.2289456>

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. *Administration and Policy in Mental Health*, 42(5), 533–544. <https://doi.org/10.1007/s10488-013-0528-y>

Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. *Annual Review of Psychology*, 63, 539–569. <https://doi.org/10.1146/annurev-psych-120710-100452>

Porter, M. E. (2008). *Competitive advantage: Creating and sustaining superior performance*. simon and schuster.

Rachbini, W., Anggraeni, D., & Wulanjani, H. (2021). The influence of electronic service quality and electronic word of mouth (eWOM) toward repurchase intention: Study on e-commerce in Indonesia. *Jurnal Komunikasi (Malaysian Journal of Communication)*, 37(1), 42–58. <https://doi.org/10.17576/JKMJC-2021-3701-03>

Rindfleisch, A., Malter, A., Ganesan, S., & Moorman, C. (2008). Cross-sectional versus longitudinal survey research: Concepts, findings, and guidelines. *Journal of Marketing Research*, 45(3), 261–279. <https://doi.org/10.1509/jmkr.45.3.261>

Roy, S. K., Singh, G., Hope, M., Nguyen, B., & Harrigan, P. (2023). The role of e-service quality in online customer engagement and loyalty. *Journal of Service Management*, 34(3), 402–428. <https://doi.org/10.1108/JOSM-03-2022-0098>

Salem, O. T., & Kiss, M. (2022). The impact of perceived service quality on customers' repurchase intention: Mediation effect of price perception. *Innovative Marketing*, 18(4), 1–12. [https://doi.org/10.21511/im.18\(4\).2022.01](https://doi.org/10.21511/im.18(4).2022.01)

Sheth, J. N., Newman, B. I., & Gross, B. L. (1991). Why we buy what we buy: A theory of consumption values. *Journal of Business Research*, 22(2), 159–170. [https://doi.org/10.1016/0148-2963\(91\)90050-8](https://doi.org/10.1016/0148-2963(91)90050-8)

Statista. (2024). *Fast food market in Indonesia—Statistics & facts*. Statista. <https://www.statista.com/topics/9847/fast-food-market-in-indonesia/>

Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. *Journal of Retailing*, 77(2), 203–220. [https://doi.org/10.1016/S0022-4359\(01\)00041-0](https://doi.org/10.1016/S0022-4359(01)00041-0)

Troise, C., Corvello, V., Ghobadian, A., & O'Regan, N. (2023). How can SMEs successfully navigate the digital food delivery revolution? A dynamic capability perspective. *Technological Forecasting and Social Change*, 188. <https://doi.org/10.1016/j.techfore.2023.122305>

Venkatesh, V., & Davis, F. D. (2024). Unified theory of acceptance and use of technology: A synthesis and the road ahead. *Journal of the Association for Information Systems*, 25(1), 85–114. <https://doi.org/10.1145/2520https://doi.org/10.17705/1jais.00850>

Weiner, B. (2000). Attributional thoughts about consumer behavior. *Journal of Consumer Research*, 27(3), 382–387. <https://doi.org/10.1086/317592>

Xu, Y., Qiu, H., Lian, Q., & Zhang, M. (2023). Customer experience and repeat patronage intentions in mobile commerce: A cross-cultural comparison. *International Journal of Consumer Studies*, 47(5), 1895–1912. <https://doi.org/10.1111/ijcs.12923>

Yin, R. K. (2018). *Case Study Research and Applications: Design and Methods* (6th ed.). SAGE Publications.

Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. *Journal of Marketing*, 52(3), 2–22. <https://doi.org/10.1177/002224298805200302>

Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. *Journal of Consumer Research*, 37(2), 197–206. <https://doi.org/10.1086/651257>